EISSN 1726-3522
Язык: ru

Архив статей журнала

ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ КАТАЛИТИЧЕСКОГО РИФОРМИНГА БЕНЗИНА МЕТОДАМИ АНАЛИЗА ЧУВСТВИТЕЛЬНОСТИ (2020)
Выпуск: Т. 21 № 4 (2020)
Авторы: Сафиуллина Лиана Фануровна, Губайдуллин Ирек Марсович, Зайнуллин Равиль Забитович, Коледина Камила Феликсовна

Для изучения одного из важнейших процессов нефтепереработки - каталитического риформинга, требуется детализированная кинетическая модель. При разработке кинетической модели возникает сложность в связи с большим количеством компонентов реакционной смеси и большим количеством стадий химических превращений. Альтернативой могут быть сокращенные механизмы реакций, которые применимы для решения задачи и обеспечивают реалистичное описание процесса. В данной работе для анализа кинетической модели и получения сокращенного механизма реакции используются методы анализа чувствительности математической модели. Применение указанной методики позволяет выявить стадии каталитического риформинга бензина, наименее влияющие на общую динамику изменения концентраций значимых веществ реакции. Исследовано влияние исключения данных стадий на кинетику процесса с химической точки зрения. Предложена редуцированная схема каталитического риформинга бензина с исключением данных стадий. Редуцированная схема обеспечивает вполне удовлетворительное согласие как по профилям температуры, так и по профилям концентраций значимых веществ реакции.

Сохранить в закладках
ОБ АНАЛИЗЕ УСТОЙЧИВОСТИ ТЕЧЕНИЙ ЖИДКОСТИ В КАНАЛЕ ЭЛЛИПТИЧЕСКОГО СЕЧЕНИЯ С ПРИМЕНЕНИЕМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ НА НЕСТРУКТУРИРОВАННОЙ СЕТКЕ (2020)
Выпуск: Т. 21 № 4 (2020)
Авторы: Клюшнев Никита Викторович

Существующая технология численного анализа устойчивости течений вязкой несжимаемой жидкости в каналах постоянного сечения была ранее расширена на случай локальных пространственных аппроксимаций на неструктурированных сетках, приводящих к задачам с большими разреженными матрицами. Для пространственной аппроксимации при этом используется метод конечных элементов, а для решения частичных проблем собственных значений, возникающих при исследовании устойчивости течений, эффективный метод ньютоновского типа. В данной работе проводится подробное численное исследование предложенного подхода на примере двумерной конфигурации - течения Пуазейля в канале эллиптического сечения. Работоспособность подхода демонстрируется для широкого диапазона отношений длин полуосей сечения вплоть до отношения, при котором данное течение становится линейно неустойчивым. Показана сходимость ведущей части спектра по шагу сетки и совпадение результатов с результатами, полученными на основе аппроксимации спектральным методом коллокаций.

Сохранить в закладках
О МЕТОДЕ РАСЧЕТА МОДУЛЯ НЕПРЕРЫВНОСТИ ОБРАТНОГО ОПЕРАТОРА И ЕГО МОДИФИКАЦИЙ С ПРИЛОЖЕНИЕМ К НЕЛИНЕЙНЫМ ЗАДАЧАМ ГЕОЭЛЕКТРИКИ (2020)
Выпуск: Т. 21 № 4 (2020)
Авторы: Шимелевич Михаил Ильич

Рассматриваются априорные оценки неоднозначности (погрешности) приближенных решений условно-корректных нелинейных обратных задач, основанные на модуле непрерывности обратного оператора и его модификациях. Установлена связь модуля непрерывности обратного оператора с разрешающей способностью геофизического метода. Показано, что в классе кусочно-постоянных решений, определенных на заданной сетке параметризации, модуль непрерывности обратного оператора и его модификации монотонно возрастают с увеличением размерности сетки. Предложен метод построения оптимальной сетки параметризации, которая имеет максимальную размерность при условии, что модуль непрерывности обратного оператора не превышает заданной величины. Представлен численный алгоритм расчета модуля непрерывности обратного оператора и его модификаций с использованием алгоритмов Монте-Карло, исследуются вопросы сходимости алгоритма. Предлагаемый метод применим также для расчета классических апостериорных оценок погрешности. Приводятся численные примеры для нелинейных обратных задач геоэлектрики.

Сохранить в закладках
РАЗРАБОТКА ПРОТОТИПА ВЫСОКОПРОИЗВОДИТЕЛЬНОГО ГРАФОВОГО ФРЕЙМВОРКА ДЛЯ ВЕКТОРНОЙ АРХИТЕКТУРЫ NEC SX-AURORA TSUBASA (2020)
Выпуск: Т. 21 № 3 (2020)
Авторы: Афанасьев И. В.

В данной статье описан подход к созданию прототипа графового фреймворка VGL (Vector Graph Library), нацеленного на эффективную реализацию графовых алгоритмов для современной векторной архитектуры NEC SX–Aurora TSUBASA. Современные векторные системы позволяют значительно ускорять приложения, интенсивно использующие подсистему памяти, подклассом которых являются графовые алгоритмы. Однако подходы к эффективной реализации графовых алгоритмов для векторных систем на сегодняшний день исследованы крайне слабо: вследствие сильно нерегулярной структуры графов реального мира, эффективно задействовать векторные особенности целевых платформ затруднительно. В работе показано, что разработанные на основе предложенного фреймворка VGL реализации графовых алгоритмов не уступают в производительности оптимизированным “вручную” аналогам за счет инкапсуляции большого числа оптимизаций графовых алгоритмов, характерных для векторных систем. Вместе с этим предложенный фреймворк позволяет значительно упростить процесс разработки графовых алгоритмов для векторных систем, на порядок сокращая объем кода реализуемых алгоритмов и скрывая от пользователя особенности программирования систем данного класса.

Сохранить в закладках
О ТЕОРЕМЕ КЕНИГА ДЛЯ ЦЕЛЫХ ФУНКЦИЙ КОНЕЧНОГО ПОРЯДКА (2020)
Выпуск: Т. 21 № 3 (2020)
Авторы: Громов Анатолий Николаевич

Показано, что теорема Кенига о нулях аналитической функции, примененная к логарифмической производной целой функции конечного порядка, приводит к алгоритму отыскания нулей, для которого областями сходимости являются многоугольники Вороного искомых нулей. Так как диаграмма Вороного последовательности нулей составляет множество меры нуль, то алгоритм имеет глобальную сходимость. Дана оценка скорости сходимости. Для итераций высших порядков, которые строятся с помощью теоремы Кенига, рассмотрено влияние кратности корня на область сходимости и приводится оценка скорости сходимости.

Сохранить в закладках
О ВЫЧИСЛЕНИИ ФУНКЦИОНАЛОВ МИНКОВСКОГО ЧЕТЫРЕХМЕРНЫХ ЦИФРОВЫХ ИЗОБРАЖЕНИЙ (2020)
Выпуск: Т. 21 № 2 (2020)
Авторы: Богоявленская Ольга Анатольевна

Функционалы Минковского являются важным инструментом для изучения морфологии пористых сред. Настоящая работа посвящена построению алгоритма вычисления функционалов Минковского четырехмерных цифровых изображений, возникающих, в частности, при описании динамики изменения порового пространства среды. В работе впервые программно реализован алгоритм вычисления функционалов Минковского четырехмерных цифровых изображений.

Сохранить в закладках
ВЫЧИСЛИТЕЛЬНЫЙ АЛГОРИТМ ДЛЯ РЕШЕНИЯ ЗАДАЧИ УПАКОВКИ ШАРОВ ДВУХ РАЗЛИЧНЫХ ТИПОВ В ТРЕХМЕРНОЕ МНОЖЕСТВО С НЕЕВКЛИДОВОЙ МЕТРИКОЙ (2020)
Выпуск: Т. 21 № 2 (2020)
Авторы: Казаков Александр Леонидович, Лемперт Анна Ананьевна, Та Ч. Т.

Рассматривается задача упаковки шаров двух типов в замкнутое ограниченное множество в трехмерном пространстве как с евклидовой, так и со специальной неевклидовой метрикой. Требуется максимизировать радиус шаров при известном количестве шаров каждого типа и заданном отношении между радиусами. Предложен вычислительный алгоритм, основанный на комбинации метода бильярдного моделирования и оптико-геометрического подхода, базирующегося на фундаментальных физических принципах Ферма и Гюйгенса. Приведены результаты вычислительного эксперимента.

Сохранить в закладках
ОБ ОДНОЙ ОБРАТНОЙ ЗАДАЧЕ СИНТЕЗА НАНООПТИЧЕСКИХ ЗАЩИТНЫХ ЭЛЕМЕНТОВ ДЛЯ ВИЗУАЛЬНОГО И АВТОМАТИЗИРОВАННОГО КОНТРОЛЯ (2020)
Выпуск: Т. 21 № 1 (2020)
Авторы: Гончарский Антон Александрович, Дурлевич Святослав Радомирович

Статья посвящена решению обратных задач синтеза нанооптических защитных элементов. Синтез нанооптического элемента включает в себя как решение обратной задачи расчета его фазовой функции, так и прецизионное формирование микрорельефа. При освещении микрорельефа в любой точке нанооптического элемента когерентным излучением в фокальной плоскости, параллельной плоскости оптического элемента, формируется изображение, используемое для автоматизированного контроля. Область оптического элемента разбивается на элементарные области. Изображение в элементарных областях формируется с помощью бинарных киноформов, фазовая функция которых рассчитывается с помощью решения нелинейного интегрального уравнения Фредгольма первого рода. Глубина микрорельефа в каждой элементарной области постоянна и определяет цвет элементарной области при освещении оптического элемента белым светом. Разработанные элементы могут быть использованы для защиты документов, акцизных марок, брендов и др.

Сохранить в закладках