Описаны конструкция и способы изготовления самонесущих высококонтрастных в рентгеновском спектральном диапазоне длин волн ( ≈ 0,6÷14 Å) рентгеношаблонов, являющихся инструментом для формирования высокоаспектных резистивных топологий толщиной до 1 мм и более, причем как из позитивных, так и негативных рентгенорезистов. Подробно описаны два способа изготовления: на основе плазмохимического травления и на основе лазерной резки. Были изготовлены образцы обоими этими способами и проведено их сравнение. Выполненная работа показывает, что таким образом можно изготавливать самонесущие высококонтрастные рентгеношаблоны и LIGA-шаблоны из промышленно выпускаемых фольг тяжелых металлов, таких как тантал и др. с минимальными топологическими размерами до 15 мкм. Способ лазерной резки с использованием мощного фемтосекундного лазера более оперативен и требует существенно меньшей технологической подготовки и меньшего количества операций для его реализации.
The design and methods of manufacturing self-supporting high-contrast in the X-ray spectral wavelength range (λ ≈ 0.6÷14 Å) X-ray masks are described, which are a tool for the formation of high-aspect resistive topologies with a thickness of up to 1 mm or more, both of positive and negative X-ray resists. Two manufacturing methods are described in detail, namely: on the basis of plasma chemical etching and on the basis of laser micro-processing (laser cutting). Samples were made by both of these methods and their comparison was carried out. The work carried out shows that these methods can be used to produce self-supporting high-contrast X-ray masks and LIGA-masks from industrially produced heavy metal foils, such as tantalum and other with minimum topological dimensions up to 15 microns. The method of laser cutting using a powerful femtosecond laser is more efficient and requires significantly less technological preparation and fewer operations for its implementation.
Идентификаторы и классификаторы
- SCI
- Физика
- Префикс DOI
- 10.51368/1996-0948-2022-1-75-82
- eLIBRARY ID
- 43895217
Данная работа демонстрирует, что, применяя известные способы ПХТ и лазерной микрообработки материалов (лазерной резки), можно из промышленно выпускаемых фольг тяжелых металлов, таких как тантал, вольфрам и др., формировать самонесущие структуры, которые могут быть использованы в качестве высококонтрастных рентгено- и LIGA-шаблонов, причём практически во всём спектральном диапазоне задействованном в настоящее время в экспериментальных работах по рентгенолитографии и LIGA-технологии. Достигнутый на настоящий момент уровень минимизации топологических размеров в изготовлении таких структур составляет 15 мкм при толщине исходной фольги 30 мкм с шероховатостью кромки реза 1 мкм. Применяя такие шаблоны можно существенно увеличить диапазон линейки изготавливаемых посредством глубокой рентгенолитографии приборов МТС и МЭМС, в частности ММС и ПММС, варьируя как размеры их топологии, так и их толщину. Это проявится в физических параметрах подобных устройств, например, используемых для управления характеристиками пучков электромагнитного излучения терагерцового и субтерагерцового диапазонов.
Следует отметить, что способ лазерной резки с использованием мощного фемтосекундного лазера более оперативен и требует существенно меньшей технологической подготовки и меньшего количества операций для его реализации.
Список литературы
- Васильев А. А., Лучинин В. В., Мальцев П. П. // Микросистемная техника. Материалы, технологии, элементная база. Электронные компоненты. 2000. № 4. С. 3.
- Reznikova E. F., Morh J., Hein H. // Microsystem technologies. 2005. № 11. P. 282.
- Генцелев А. Н., Дульцев Ф. Н., Кондратьев В. И., Лемзяков А. Г. // Автометрия. 2018. № 2. C. 20.
- Jae Man Park, Jong Hyun Kim, Jun Sae Han, Da Seul Shin, Sung Cheol Park, Seong Ho Son, Seong Jin Park // Materials. 2019. Vol. 12. № 13. P. 2056.
https://doi.org/10.3390/ma12132056 - Кузнецов С. А., Генцелев А. Н., Баев С. Г. // Автометрия. 2017. № 1. C. 107.
- Генцелев А. Н., Кузнецов С. А., Гольденберг Б. Г., Баев С. Г., Лоншаков Е. А. // Поверхность: Рентген., синхротрон. и нейтрон. исслед. 2017. № 7. C. 32.
- Bogdanov A. L., Peredkov S. // Microelectronic Engineering. 2000. Vol. 53. P. 493.
- Генцелев А. Н., Кузнецов С. А., Дульцев Ф. Н., Гольденберг Б. Г., Зелинский А. Г., Кондратьев В. И., Таныгина Д. С. // Автометрия, 2019. № 2. C. 14.
- Валиев К. А. Физика субмикронной литографии. – М.: Наука, 1990.
- Neureuther A. R. Investigation be synchrotron radiation / Ed. H. Winick, S. Doniach. – N.Y.; L: Plenum Press. 1980.
- Feder R., Spiller E., Topalian J. // Polym. Eng. Sci. 1977. Vol. 17. № 6. Р. 385.
- Литвинов Ю. М., Мазуренко С. Н., Матвеев В. М. // Электронная техника. Серия 3. Микроэлектроника. 1989. Вып. 6. С. 1498.
- Мазуренко С. Н., Мануйлов В. В., Матвеев В. М. // Микроэлектроника. 1990. Т. 19. Вып. 3. С. 284.
- Генцелев А. Н. // Поверхность: Рентген., синхротрон. и нейтрон. исслед. 2022 (в печати).
- Баев С. Г., Бессмельцев В. П., Булушев Е. Д., Голошевский Н. В., Горяев E. П., Кастеров В. В., Максимов М. В., Смирнов К. К. // Интерэкспо Гео-Сибирь. 2016. Т. 5. № 2. С. 3.
- Kamlage G., Bauer T., Ostendorf A., Chichkov B. // Applied Physics A. 2003. Vol. 77. № 2. P. 307.
- A. A. Vasil’ev, V. V. Luchinin, and P. P. Mal’cev, Elektronnye komponenty, No. 4, 3 (2000).
- E. F. Reznikova, J. Morh, and H. Hein, Microsystem technologies, No. 11, 282 (2005).
- A. N. Gentselev, F. N. Dul’tsev, V. I. Kondrat’ev, and A. G. Lemzyakov, Optoelectronics, Instrumentation and Data Processing 54 (2), 127 (2018).
- Jae Man Park, Jong Hyun Kim, Jun Sae Han, Da Seul Shin, Sung Cheol Park, Seong Ho Son, and Seong Jin Park, Materials 12 (13), 2056 (2019). https://doi.org/10.3390/ma12132056
- S. A. Kuznetsov, A. N. Gentselev, and S. G. Baev, Optoelectronics, Instrumentation and Data Processing 53 (1), 88 (2017).
- A. N. Gentselev, S. A. Kuznetsov, B. G. Goldenberg, S. G. Baev, and E. A. Lonshakov, J. Surf. Invest. X-ray, Synchrotron Neutron Tech., No. 7, 32 (2017).
- A. L. Bogdanov and S. Peredkov, Microelectronic Engineering 53, 493 (2000).
- A. N. Gentselev, S. A. Kuznetsov, F. N. Dultsev, B. G. Goldenberg, A. G. Zelinsky, V. I. Kondratyev, and D. S. Tanygina, Optoelectronics, Instrumentation and Data Processing 55 (2), 115 (2019).
- K. A. Valiev, Physics of Submicron Lithograph (Nauka, Moscow, 1990) [in Russian].
- A. R. Neureuther, Investigation of Synchrotron Radiation / Ed. H. Winick, S. Doniach. (N.Y.; L: Plenum Press, 1980).
- R. Feder, E. Spiller, and J. Topalian, Polym. Eng. Sci. 17 (6), 385 (1977).
- Yu. M. Litvinov, S. N. Mazurenko, and V. M. Matveev, Elektronnaya tekhnika. Seriya 3. Mikroelektronika, No. 6, 1498 (1989)
- S. N. Mazurenko, V. V. Manujlov, and V. M. Matveev, Mikroelektronika 19 (3), 284 (1990).
- A. N. Gentselev, J. Surf. Invest. X-ray, Synchrotron Neutron Tech. (in print) (2022).
- S. G. Baev, V. P. Bessmel’cev, E. D. Bulushev, N. V. Goloshevskij, E. P. Goryaev, V. V. Kasterov, M. V. Maksimov, and K. K. Smirnov, Interekspo Geo-Sibir’ 5 (2), 3 (2016).
- G. Kamlage, T. Bauer, A. Ostendorf, and B. Chichkov, Applied Physics A 77 (2), 307 (2003).
Выпуск
С О Д Е Р Ж А Н И Е
ФИЗИКА ПЛАЗМЫ И ПЛАЗМЕННЫЕ МЕТОДЫ
Пименов И. С., Белоусов В. И., Борщеговский А. А., Жарков М. Ю., Неудачин С. В., Рой И. Н., Хайрутдинов Э. Н., Попов Л. Г., М. В. Агапова, Л. М. Бельнова
Система ввода СВЧ-излучения гиротронного комплекса токамака Т-15МД на первой стадии работ 5
Чистолинов А. В., Якушин Р. В., Перфильева А. В.
Свечение второй положительной системы молекулярного азота в разряде с жидким электролитным катодом вблизи поверхности катода в воздухе при атмосферном давлении 12
ФОТОЭЛЕКТРОНИКА
Саенко А. В., Малюков С. П., Рожко А. А.
Моделирование структуры бессвинцового перовскитного солнечного элемента 19
Гулаков И. Р., Зеневич А. О., Кочергина О. В.
Исследование пропускной способности оптического канала связи с приемником информации в виде кремниевого фотоэлектронного умножителя в условиях фоновой засветки 28
Сорокин Д. В., Драгунов Д. Э., Ляпустин М. Ю., Семенченко Н. А., Шарганов К. А.
Методы скоростной обработки видеоизображений с большим разбросом яркостей с использованием ПЛИС 34
Свиридов А. Н., Сагинов Л. Д.
Универсальные формулы для коэффициентов излучения и интегральных плотностей потоков излучения черных тел и субволновых частиц 42
ФИЗИЧЕСКОЕ МАТЕРИАЛОВЕДЕНИЕ
Исмаилов А. М., Муслимов А. Э.
Ориентационная зависимость процессов травления подложек сапфира 51
Гавриш С. В.
Импульсный разряд в парах смесей цезия с металлами 58
Чебан А. Ю.
Технология разработки тонких рудных тел с предварительной лазерной дезинтеграцией прочных горных пород 64
Кононов М. А., Растопов С. Ф.
Оптическая система контроля роста пленок Si3N4 на кварцевых подложках, нанесенных методом реактивного магнетронного распыления кремниевой мишени 70
ФИЗИЧЕСКАЯ АППАРАТУРА И ЕЁ ЭЛЕМЕНТЫ
Генцелев А. Н., Баев С. Г.
Способы изготовления самонесущих рентгеношаблонов 75
Воеводин В. В., Ребров И. Е., Хомич В. Ю., Ямщиков В. А.
Электрофизическая установка для электроформования полимерных материалов на диэлектрические подложки посредством смены полярности 83
Денисов Д. Г.
Анализ влияния ограничительных факторов в методе дифференциального рассеяния при контроле поверхностных неоднородностей субнанометрового уровня профилей оптических деталей 89
C O N T E N T S
PLASMA PHYSICS AND PLASMA METHODS
I. S. Pimenov, V. I. Belousov, A. A. Borschegovskiy, M. Y. Zharkov, S. V. Neudatchin, I. N. Roy, E. N. Khayrutdinov, L. G. Popov, M. V. Agapova, and L. M. Belnova
HF-launcher system of the gyrotron set-up of the T-15MD tokamak on the first stage operation 5
A. V. Chistolinov, R. V. Yakushin, and A. V. Perfilieva
Emission of the second positive system of molecular nitrogen in a discharge with a liquid electrolyte cathode near the cathode surface in air at atmospheric pressure 12
PHOTOELECTRONICS
A. V. Saenko, S. P. Malyukov, and A. A. Rozhko
Modeling the structure of a lead-free perovskite solar cell 19
I. R. Gulakov, A. O. Zenevich, O. V. Kochergina
Investigation of the optical communication channel throughput of an information receiver in the form of a silicon photomultiplier tube under conditions of background illumination 28
D. V. Sorokin, D. E. Dragunov, M. Y. Lyapustin, N. A. Semenchenko, and K. A. Sharganov
FPGA-based methods for high-speed processing of video images with large brightness scatter 34
A. N. Sviridov, L. D. Saginov
Universal formulas for calculating emissivity and integral radiation flux densities of black bodies and subwavelength particles 42
PHYSICAL SCIENCE OF MATERIALS
A. M. Ismailov and A. E. Muslimov
Orientation dependence of sapphire substrate etching processes 51
S. V. Gavrish
Pulsed discharge in vapors of mixtures of cesium with metals 58
A. Yu. Cheban
Technology of development of thin ore bodies with preliminary laser disintegration of strong rocks 64
M. A. Kononov and S. F. Rastopov
Optical control system for the growth of Si3N4 films on quartz substrates applied by the method of reactive magnetron sputtering of silicon target 70
PHYSICAL APPARATUS AND ITS ELEMENTS
A. N. Gentselev and S. G. Baev
Methods of manufacturing self-supporting X-ray templates 75
V. V. Voevodin, I. E. Rebrov, V. U. Khomich, and V. A. Yamshchikov
Electrophysical setup for the electroforming of polymeric materials onto dielectric materials by reversing the polarity 83
D. G. Denisov
The analysis of the influence of limiting factors in the method of differential scattering in the control of surface inhomogeneities of the subnanometer level of the profiles of optical parts 89
Другие статьи выпуска
Для достижения высоких технологические показателей качества различных оптических деталей нового поколения, необходим не только современный подход к методам и средствам обработки деталей, но и реализация перспективных высокоточных бесконтактных методов диагностики. Особое внимание в единой технологической цепочке занимают стадии глубокой полировки, когда высотные статистические параметры профилей достигают нано- и субнанометровых уровней. Для диагностики высотных статистических параметров субнанометрового уровня на сегодняшний день применяются различные классы оптико-электронных приборов и систем. Наибольший интерес в задачах высокоточного аттестационного контроля представляют такие перспективные приборы и системы, как: динамические интерферометры, а также приборы, позволяющие оценивать среднеквадратическое значение поверхностных неоднородностей субнанометрового уровня по данным анализа индикатрисы рассеянного лазерного излучения. В мировой практике методы, основанные на анализе индикатрис рассеянного лазерного излучения, классифицируются на [1–7]: методы полного интегрального рассеяния (TIS – Total Integrated Scattering), методы определения функции распределения коэффициента отражения по двум угловым координатам (метод определения характеристики BRDF – Bidirectional Reflectance Distribution Func-tion), методы дифференциального рассеяния (ARS – Angle-Resolved Scattering). Анализ влияния ограничительных факторов в методе дифференциального рассеяния позволяет определить его систематическую погрешность и повысить точность измерения.
Представлены и реализованы схемотехнические решения питания установки для получения нетканых материалов методом электроформования на коллекторы, покрытые диэлектриком. При помощи нескольких высоковольтных коммутаторов достигается периодическая смена полярности полимерного раствора, что позволяет осуществить осаждение полимерной струи при отсутствии стекания заряда с формованного материала. Приведены характерные электрические характеристики процесса и показаны возможные модификации установки.
Тонкие пленки нитрида кремния широко применяются как в микроэлектронике, так и в оптических и оптоэлектронных приборах. Для получения пленок Si3N4 используются такие методы как химическое осаждение из газовой фазы и магнетронное напыление. В работе представлены результаты исследований по контролю над ростом и оптическими свойствами пленок Si3N4 устройством, работа которого основана на возбуждении поверхностного плазмонного резонанса и позволяет активно влиять на процесс роста нитридной пленки.
Представлены результаты резания прочных горных пород мощным лазерным излучением. Предлагается технико-технологическое решение для селективной выемки богатых участков тонких рудных жил из массива прочных горных пород с применением горного комбайна, оснащенного комбинированным лазерно-механическим оборудованием. Лазерное воздействие ведется за контурами тонкой жилы с дезинтеграцией минерализованных вмещающих пород и их последующим фрезерованием с целью образования обнаженных поверхностей в нижней части тонкой жилы для последующей отбойки руды гидравлическим молотом. Дифференцированная разработка массива с применением рационального сочетания различных способов дезинтеграции прочных пород обеспечивает реализацию принципа ресурсосбережения в горном производстве.
На основе результатов расчетных и экспериментальных исследований показана перспективность использования сплава цезия с рубидием в качестве плазмообразующей среды в серийных импульсных источниках ИК-излучения. Установлено, что при 25 % весовом содержании рубидия в сплаве с цезием давление паров и теплопроводность плазмы близки к указанным характеристикам серийной импульсной лампы, наполненной амальгамой цезия. Полученные результаты позволили повысить пиковую мощность излучения и создать экологически чистый импульсный источник ИК-излучения.
Проведен анализ процессов травления сапфировых подложек. Рассматриваются особенности использования методов химико-механического, лазерного, ионного, электронного травления сапфировых подложек. Определено, что при химико-механическом и лазерном травлении плоскостей сапфира происходит послойное удаление материала через промежуточные процессы внутрислоевого растрескивания, а скорость травления коррелирует с межплоскостным расстоянием. В случае применения ионного и электронного травления основным механизмом является образование пронизывающих пор, треков, которые ослабляют межатомные связи и приводят к разрушению кристаллической решетки сапфира. При этом скорость травления различных плоскостей кристалла сапфира коррелирует с потенциальной энергией межатомного взаимодействия внутри соответствующей плоскости. Наименьшая интенсивность F+-полосы катодолюминесценции, как и скорость генерации кислородных вакансий наблюдается для С-плоскости сапфира, атомы кислорода в которых формируют плотноупакованный каркас. Наибольшая интенсивность катодолюминесценции наблюдается для А-плоскости сапфира, в которой атомы обладают наименьшей потенциальной энергией.
Впервые получены универсальные формулы, пригодные для расчетов коэффициентов излучения и интегральных плотностей потоков излучения как тел, имеющих размеры много большие, чем излучаемые ими длины волн («большие тела»), так и субволновых тел (частиц). К несомненным достоинствам предложенного метода расчета, базирующегося на теории мод, следует отнести: точную связь между размерами, формой и температурой тел и величинами коэффициентов излучения и интегральных плотностей потоков излучения; этот метод гораздо менее трудоемок и более нагляден, чем другие методы.
Исследована пропускная способность оптического канала связи с приемником информации в виде кремниевого фотоэлектронного умножителя (Si-ФЭУ) в условиях фоновой засветки. Представлены зависимости пропускной способности оптического канала связи от уровня фоновой засветки, а также определены уровни фоновой засветки, необходимой для «ослепления» фотоприемника от перенапряжения. Показано, что использование светофильтра с длиной волны 470 нм, соответствующего максимуму спектральной чувствительности Si-ФЭУ, позволяет восстановить информационный сигнал после «ослепления». Полученные результаты могут быть использованы при разработке оптических систем связи.
Рассмотрено численное моделирование бессвинцового перовскитного солнечного элемента в программе SCAPS-1D для оптимизации его структуры и улучшения эффективности преобразования энергии. Проведено исследование влияния толщины, концентраций дефектов и акцепторов в слое бессвинцового перовскита CH3NH3SnI3, а также работы выхода из материала тыльного контакта на фотоэлектрические параметры солнечного элемента. Получено, что оптимальная толщина слоя CH3NH3SnI3 составляет 500 нм, концентрация дефектов должна составлять порядка 1014–1015 см-3, а оптимальная концентрация акцепторов должна составлять 1016 см-3. Показано, что работа выхода материала тыльного контакта должна быть не менее 4,9–5 эВ для создания высокоэффективных солнечных элементов. Получена макси-мальная эффективность 23,13 % для перовскитного солнечного элемента со структу-рой FTO/TiO2/CH3NH3SnI3/Cu2O/C (ток короткого замыкания 31,94 мА/см2, напряже-ние холостого хода 0,95 В, фактор заполнения 76,07 %). Результаты могут быть ис-пользованы при разработке и изготовлении нетоксичных, высокоэффективных и не-дорогих перовскитных солнечных элементов.
Измерена интенсивность свечения второй положительной системы азота вблизи поверхности раствора в разряде с жидким электролитным катодом при атмосферном давлении в воздухе для водных растворов разного состава. Показано, что интенсивность свечения для всех исследованных растворов сильно падает с ростом разрядного тока от 20 до 100 мА. Показано, что для этих растворов при всех разрядных токах вращательная и колебательная температуры, определённые по молекулярному азоту, идентичны и равны соответственно 2400 и 3800 К. Обсуждаются возможные причины различия в интенсивности свечения второй положительной системы азота при одинаковых температурах.
В настоящее время в Национальном исследовательском центре «Курчатовский институт» идёт подготовительная стадия работ для первых экспериментов на токамаке Т-15МД. Одним из этапов подготовки является сооружение гиротронного комплекса и конструирование системы ввода СВЧ-мощности для электронно-циклотронного резонансного (ЭЦР) нагрева плазмы. Во время наладочных работ, в связи с пониженным энергопитанием, Т-15МД будет работать с относительно низкими магнитными полями (тороидальное магнитное поле в центре плазмы Btor(r/a = 0) 1,5 Тл). Поэтому частота гиротрона выбрана равной 82,6 ГГц при длительности импульса до 30 секунд с выходной мощностью около 1 МВт. Эксперименты предполагается проводить на второй гармонике необыкновенной волны при вводе СВЧ-излучения с внешней стороны вакуумной камеры (резонанс при Btor 1,5 Тл). СВЧ-излучение гиротрона поступает к фланцу камеры установки по вакуумному гофрированному волноводу, длинной около 35 м, с внутренним диаметром 63,5 мм. Главной задачей гиротронного комплекса Т-15МД на первой стадии работ является предыонизация рабочего газа. Система ввода позволяет фокусировать волновой пучок, и в области фокусировки плотность мощности в поперечном сечении достигает значений 0,200,25 МВт/см2, что аналогично успешным экспериментам по пробою на токамаке Т-10. Последнее зеркало системы ввода способно отклонять пучок в тороидальном и полоидальном направлениях в пределах (25о) и (–5о)(+35о) соответственно. Это придаёт гибкость экспериментам, как по пробою, так и другим задачам по ЭЦР-нагреву и поддержанию безындукционного тока электронно-циклотронными волнами на квазистационарной стадии разряда. В условиях пробоя на стороне сильного магнитного поля (Btor(r/a = 0) 1,3 Тл), электротехническая система Т-15МД позволяет быстро поднять поле в процессе разряда, переместив нагрев в центр.
Издательство
- Издательство
- АО "НПО "ОРИОН"
- Регион
- Россия, Москва
- Почтовый адрес
- 111538, г Москва, р-н Вешняки, ул Косинская, д 9
- Юр. адрес
- 111538, г Москва, р-н Вешняки, ул Косинская, д 9
- ФИО
- Старцев Вадим Валерьевич (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- orion@orion-ir.ru
- Контактный телефон
- +7 (499) 3749400