ЧИСЛЕННЫЙ АЛГОРИТМ И ВЫЧИСЛИТЕЛЬНЫЕ ЭКСПЕРИМЕНТЫ ДЛЯ ОДНОЙ ЛИНЕЙНОЙ СТОХАСТИЧЕСКОЙ МОДЕЛИ ХОФФА (2024)
Исследуется модель деформации под действием высокой температуры в конструкции из двутавровых балок со случайным внешним воздействием, в ее основе лежат стохастические уравнения Хоффа на геометрическом графе с начально-конечным условием. В статье приводится описание алгоритма численного исследования рассматриваемой модели, в основе которого лежит метод Галеркина. Представленный алгоритм предусматривает получение численного решения в случае вырожденности, так и невырожденности уравнений. Основными теоретическими результатами, позволившими провести данное численное исследование, являются методы теории вырожденных групп операторов и теории уравнений соболевского типа. Алгоритмы представлены схемами, позволяющими построить на их основе блок-схемы программ для проведения вычислительных экспериментов. Кроме того, численное исследование стохастической модели предполагает в дальнейшем получение и обработку результатов экспериментов при различных значениях случайной величины, в том числе, относящихся к редким событиям.
Идентификаторы и классификаторы
- eLIBRARY ID
- 68610960
Теоретические и прикладные исследования, связанные с задачами обработки и анализа информации, идентификации и управления, используют стохастические модели [1-3] для оценки состояния и параметров сложных физических и финансовых систем. В частности, стохастические уравнения соболевского типа (1) уже несколько десятилетий используются для описания и моделирования большого числа физических, технических и технологических процессов
Ldζ = Mζdt + NdW. (1)
Аналитические и численные исследования неклассических стохастических моделей развиваются в двух направлениях. Одно из них использует понятие «белого шума» как производной Нельсона-Гликлиха от винеровского K-процесса [4, 5]. Этот подход широко используется в последние годы для стохастических уравнений соболевского типа в работах Г.А. Свиридюка, А. Фавини, А.А. Замышляева, С.А. Загребиной, Н.А. Манаковой, М.А. Сагадеевой, Т.Г. Сукачевой [6-10] и для стохастических систем леонтьевского типа в работах Ю.Е. Гликлиха, Е.Ю. Машкова [5], Г.А. Свиридюка, А.Л. Шестакова, А.А. Замышляева, А.В. Келлера [11].
Список литературы
- Фролов, А.В. Динамико-стохастические модели многолетних колебаний уровня проточных озер / А.В. Фролов. - М.: Наука, 1985. EDN: YIHLOP
- Бреер, В.В. Стохастические модели управления толпой / В.В. Бреер, Д.А. Новиков, А.Д. Рогаткин // Управление большими системами. - 2014. - № 52. - С. 85-117. EDN: THZDSR
- Кибзун, А.И. Построение доверительного множества поглощения в задачах анализа статических стохастических систем / А.И. Кибзун, С.В. Иванов, А.С. Степанова // Автоматика и телемеханика. - 2020. - Т. 81, № 4. - С. 21-36. EDN: VIWPXB
- Nelson, E. Dynamical Theories of Brownian Motion / E. Nelson. - Princeton: Princeton University Press, 1967.
- Gliklikh, Yu.E. Global and Stochastic Analisys with Applications to Mathematical Physicas / Yu.E. Gliklikh. - London; Dordrecht; Heidelberg; New York: Springer, 2011.
- Свиридюк, Г.А. Динамические модели соболевского типа с условием Шоуолтера-Сидорова и аддитивными шумами / Г.А. Свиридюк, Н.A. Манакова // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2014. - Т. 7, № 1. - С. 90-103. EDN: RVKKPB
- Favini, A. Linear Sobolev Type Equations with Relatively -Sectorial Operators in Space of Noises / A. Favini, G.A. Sviridyuk, N.A. Manakova // Abstract and Applied Analysis. - 2015. - V. 2015. - Article ID: 697410. - 8 p.
- Favini, A. One Class of Sobolev Type Equations of Higher Order with Additive White Noise / A. Favini, G.A. Sviridyuk, A.A. Zamishlyaeva // Communications on Pure and Applied Analysis. - 2016. - V. 15, № 1. - P. 185-196. EDN: WBYHQT
- Favini, A. Linear Sobolev Type Equations with Relatively -Radial Operators in Space of Noises / A. Favini, G. Sviridyuk, M. Sagadeeva // Mediterranean Journal of Mathematics. - 2016. - V. 13, № 6. - P. 4607-4621. EDN: WPETIL
-
Zagrebina, S. The Multipoint Initial-Final Value Problems for Linear Sobolev-Type Equations with Relatively -Sectorial Operator and Additive Noise / S. Zagrebina, T. Sukacheva, G. Sviridyuk // Global and Stochastic Analysis. - 2018. - V. 5, № 2. - P. 129-143. EDN: YCDVHF
-
Shestakov, A.L. The Theory of Optimal Measurements / A.L. Shestakov, A.V. Keller, G.A. Sviridyuk // Journal of Computational and Engineering Mathematics. - 2014. - V. 1, № 1. - P. 3-16. EDN: TRZDMN
-
Da Prato, G. Stochastic Equations in infinite dimensions / G. Da Prato, J. Zabczyk. - Cambridge: Cambridge University Press, 1992.
-
Melnikova, I.V. Abstract Stochastic Equations. I. Classical and Distributional Solutions / I.V. Melnikova, A.I. Filinkov, U.A. Anufrieva // Journal of Mathematical Sciences. - 2002. - V. 111, № 2. - P. 3430-3475. EDN: XXNAZB
-
Kovcs, M.Introduction to Stochastic Partial Differential Equations / M. Kovcs, S. Larsson // Proceedings of New Directions in the Mathematical and Computer Sciences. - Abuja, 2008. - V. 4. - P. 159-232.
-
Замышляева, А.А. Стохастические неполные линейные уравнения соболевского типа высокого порядка с аддитивным белым шумом / А.А. Замышляева // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2012. - № 40 (299), вып. 14. - С. 73-82. EDN: PIDMID
-
Загребина, С.А. Линейные уравнения соболевского типа с относительно -ограниченными операторами и аддитивным белым шумом / С.А. Загребина, Е.А. Солдатова // Известия Иркутского государственного университета. Серия: Математика. - 2013. - Т. 6, № 1. - С. 20-34. EDN: PXDLYX
-
Hoff, N.J. The Analysis of Structures / N.J. Hoff. - New York: John Wiley, 1956.
-
Сидоров, Н.А. Общие вопросы регуляризации в задачах теории ветвления / Н.А. Сидоров. - Иркутск: Издательство Иркутского государственного университета, 1982.
-
Сидоров, Н.А. О применении некоторых результатов теории ветвления при решении дифференциальных уравнений / Н.А. Сидоров, О.А. Романова // Дифференциальные уравнения. - 1983. - Т. 19, № 9. - С. 1516-1526. EDN: UPZMZA
-
Сидоров, Н.А. Обобщенные решения дифференциальных уравнений с фредгольмовым оператором при производной / Н.А. Сидоров, М.В. Фалалеев // Дифференциальные уравнения. - 1987. - Т. 23, № 4. - С. 726-728. EDN: BFPYSO
-
Свиридюк, Г.А. Уравнения Хоффа на графах / Г.А. Свиридюк, В.В. Шеметова // Дифференциальные уравнения. - 2006. - Т. 42, № 1. - С. 126-131. EDN: HTCEWF
-
Свиридюк, Г.А. О прямой и обратной задачах для уравнений Хоффа на графе / Г.А. Свиридюк, А.А. Баязитова // Вестник Самарского государственного технического университета. Серия: Физ.-мат. науки. - 2009. - № 1 (18). - С. 6-17. EDN: KZZXHJ
-
Загребина, С.А. Устойчивость в моделях Хоффа / С.А. Загребина, П.О. Москвичева. - Saarbrcken: LAMBERT Academic Publishing, 2012.
-
Манакова, Н.А. Оптимальное управление решениями начально-конечной задачи для линейных уравнений соболевского типа / Н.А. Манакова, А.Г. Дыльков //Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2011. - № 17 (234), вып. 8. - С. 113-114. EDN: OHEMYD
-
Sagadeeva, M.A. Numerical Solution for Non-Stationary Linearized Hoff Equation Defined on Geometrical Graph / M.A. Sagadeeva, A.V. Generalov // Journal of Computational and Engineering Mathematics. - 2018. - V. 5, № 3. - P. 61-74. EDN: MAFWCD
-
Favini, A. The Multipoint Initial-Final Value Condition for the Hoff Equations on Geometrical Graph in Spaces of K- Noises / A. Favini, S.A. Zagrebina, G.A. Sviridyuk // Mediterranean Journal of Mathematics. - 2022. - V. 19. - Article ID: 53. EDN: LOAAKP
-
Солдатова Е.А. Начально-конечная задача для линейной стохастической модели Хоффа / Е.А. Солдатова // Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. - 2014. - Т. 7, № 2. - C. 124-128. EDN: SCSLNR
Выпуск
Другие статьи выпуска
Статья посвящена исследованию свойства полноты потоков, порожденных стохастическими алгебро-дифференциальными уравнениями, заданными в терминах производных в среднем справа по Нельсону. Это свойство означает, что все решения указанных уравнений существуют при всех t. Это важно для описания качественного поведения решений. Это новая задача, поскольку ранее подобная проблема изучалась для уравнений, заданных в терминах симметрических производных в среднем. Случай производных справа требуют других методов исследования и случаи производных справа и симметрических производных имеют разные важные приложения. Мы находим условия, при которых все решения стохастических адгебро-дифференциальных уравнений существуют при t. Некоторые из полученных условий являются необходимыми и достаточными.
В этой исследовательской статье мы применяем метод обобщенного проективного уравнения Риккати для построения решений бегущей волны 3D кубического фокусирующего нелинейного уравнения Шрдингера с потенциалом Вудса - Саксона. Обобщенный проективный метод Риккати является мощным и эффективным математическим инструментом для получения точных решений нелинейных уравнений в частных производных и позволяет получить множество решений бегущей волны трехмерного кубического фокусирующего нелинейного уравнения Шрдингера с потенциалом Вудса - Саксона. Эти решения содержат периодические волновые решения, светлые и темные солитонные решения. Исследование многих физических систем, таких как конденсаты Бозе - Эйнштейна и систем нелинейной оптики, приводят к нелинейному уравнению Шредингера. В статье дается подробное описание обобщенного проективного метода Риккати и демонстрируется его полезность в решение нелинейного уравнения Шрдингера с потенциалом Вудса - Саксона. В статье представлены различные графические представления полученных решений с помощью программного обеспечения MATLAB и проанализированы их характеристики. Представленные результаты дают новое представление о поведении трехмерного кубического фокусирующего нелинейного уравнения Шредингера с потенциалом Вудса - Саксона и имеют потенциальные приложения во многих областях физики, а также в нелинейной оптике и физике конденсированного состояния.
Задача синтеза многослойной дифракционной решетки формулируется как задача оптимального управления и заключается в минимизации целевого функционала, зависящего от геометрических параметров профиля решетки. Градиентный метод является наиболее надежным и стабильным методом решения этой задачи. В статье представлен метод вычисления функциональной производной (градиента) целевого функционала, который выполняется путем решения сопряженной задачи со специальными граничными условиями. Кроме того, в статье обсуждается численная реализация этого решения и расчет градиента. Также представлены результаты вычислительного эксперимента.
Статья посвящена исследованию устойчивости стационарного решения для неавтономной линеаризованной модели Хоффа на геометрическом графе. Такая модель позволяет описывать конструкцию из двутавровых балок, находящуюся под внешним давлением и воздействием высоких температур. Используя условия устойчивости стационарного решения для такой модели, можно описать условия стабильности конструкции, описываемой данной моделью на геометрическом графе. Отметим, что для линеаризованной модели Хоффа нельзя применить метод экспоненциальных дихотомий, так как относительный спектр оператора уравнения может пересекаться с мнимой осью. Поэтому для исследования устойчивости мы будем применять второй метод Ляпунова. Статья кроме введения и списка литературы содержит две части. В первой из них приводятся условия разрешимости неавтономной линеаризованной модели Хоффа на геометрическом графе, а во второй исследуется устойчивость стационарного решения этой модели.
На основе двухжидкостных представлений о гидродинамике гетерогенных сред жидкость (газ) - твердые частицы без фазовых переходов и в отсутствии массовых сил с ньютоновским реологическим законом непрерывных несжимаемых компонент предложена модель напорного ламинарного течения броуновской суспензии, учитывающей давление частиц в уравнении для дисперсионной фазы. Давление частиц оценено через их энергию, затрачиваемой на сохранение стабильности гомогенности суспензии. Процедура линеаризации градиента давления в дисперсной фазе проведена с введением параметра, означающего существование поперечной координаты, в которой скорости фаз равны. Сформулирована и аналитически решена в геометрическом формате 2-D, предполагая однонаправленность течения суспензии в плоском горизонтальном канале, система модельных дифференциальных уравнений с краевыми условиями фаз к стенкам канала и осевой симметрии поля скоростей. Установлено, что увеличение скорости потока приводит к большему опережению скорости частиц вблизи стенки и к большему отставанию в ядре потока, причем максимальная скорость фаз на оси канала больше скорости жидкости без дисперсионной фазы. Сравнительный анализ результатов расчета коэффициента сопротивления с известными экспериментальными данными подтвердили корректность предложенной модели и подтвердили снижение сопротивления течению броуновских суспензий по сравнению с гомогенной жидкой средой.
Мы предлагаем математическую модель распределения влаги в пористом материале в процессе промышленного увлажнения. С использованием ряда предположений, модель может быть представлена в виде граничной задачи для обыкновенного дифференциального уравнения. В данной статье мы обсуждаем возможные методы решения этой задачи, выделяем некоторые проблемы, которые могут возникнуть в процессе решения. В конце статьи мы представляем некоторые численные результаты моделирования процесса увлажнения для различных материалов и параметров процесса. Модель, рассматриваемая в статье, позволяет лучше понять влияние параметров задачи с целью оптимизации процесса увлажнения в промышленности.
Рассматривается движение гидродинамического потока в химическом реакторе, описываемое одномерной однопараметрической диффузионной моделью. В рамках данной модели поставлена задача идентификации граничного условия на выходе реактора, содержащего неизвестную концентрацию исследуемого реагента, выходящего из реактора потоке. При этом дополнительно задается закон изменения концентрации реагента во времени на входе реактора. После введения безразмерных переменных, методом разностной аппроксимации построен дискретный аналог преобразованной обратной задачи в виде системы линейных алгебраических уравнений. Дискретный аналог дополнительного условия записывается в виде функционала и решение системы линейных алгебраических уравнений представляется как вариационная задача с локальной регуляризацией. Для численного решения построенной вариационной задачи предлагается специальное представление. В результате система линейных уравнений при каждом дискретном значении безразмерной времени распадается на две независимые линейные подсистемы, каждая из которых решается независимо друг от друга. В результате минимизации функционала получена явная формула для определения приближенного значения концентрации исследуемого реагента в потоке, выходящего из реактора, при каждом дискретном значении безразмерной времени. Предложенный вычислительный алгоритм опробован на данных модельного химического реактора.
Издательство
- Издательство
- ЮУрГУ
- Регион
- Россия, Челябинск
- Почтовый адрес
- 454080, Уральский федеральный округ, Челябинская область, г. Челябинск, просп. В.И. Ленина, д. 76
- Юр. адрес
- 454080, Уральский федеральный округ, Челябинская область, г. Челябинск, просп. В.И. Ленина, д. 76
- ФИО
- Александр Рудольфович Вагнер (Ректор)
- E-mail адрес
- admin@susu.ru
- Контактный телефон
- +7 (351) 2635882
- Сайт
- https://www.susu.ru