В работе исследуются условия, при которых решение эллиптического уравнения с частными производными второго порядка в единичном круге на плоскости будет вырожденным. Доказано, что всякое вырожденное решение является либо многочленом степени не больше 2, либо линейной комбинацией константы и логарифма от дробно–рационального выражения. При доказательстве основного результата используется разложение в ряд Тейлора вырожденного решения данного уравнения в произвольной точке и исследование зависимости коэффициентов полученного ряда от коэффициентов при членах более младших степеней того же ряда
Предпросмотр статьи
Идентификаторы и классификаторы
- SCI
- Математика