This paper is devoted to studying the reaction–diffusion systems with rapidly oscillating coefficients in the equations and in boundary conditions in domains with locally periodic oscillating boundary; on this boundary a Robin boundary condition is imposed. We consider the supercritical case, when the homogenization changes the Robin boundary condition on the oscillating boundary is to the homogeneous Dirichlet boundary condition in the limit as the small parameter, which characterizes oscillations of the boundary, tends to zero. In this case, we prove that the trajectory attractors of these systems converge in a weak sense to the trajectory attractors of the limit (homogenized) reaction–diffusion systems in the domain independent of the small parameter. For this aim we use the homogenization theory, asymptotic analysis and the approach of V. V. Chepyzhov and M. I. Vishik concerning trajectory attractors of dissipative evolution equations. The homogenization method and asymptotic analysis are used to derive the homogenized reaction–diffusion system and to prove the convergence of solutions. First we define the appropriate auxiliary functional spaces with weak topology, then, we prove the existence of trajectory attractors for these systems and formulate the main Theorem. Finally, we prove the main convergence result with the help of auxiliary lemmas
Идентификаторы и классификаторы
- SCI
- Математика
- УДК
- 51. Математика
This paper is the next step in our investigations of homogenization problem for reaction– diffusion systems in domains with very rapidly oscillating boundary, for detailed geometric settings see [18]. In [5] we studied the critical case, in which the Robin condition was imposed on the oscillating part of the boundary and under the homogenization the type of boundary condition was preserve and only the coefficients changed. The subcritical case, when the Robin condition becomes the Neumann condition under the homogenization, will be considered separately
Список литературы
1. Y. Amirat, G.A. Chechkin, R.R. Gadyl’shin. Asymptotics of simple eigenvalues and eigenfunctions for the laplace operator in a domain with oscillating boundary // Comput. Math. Math. Phys. 46:1, 97-110 (2006). DOI: 10.1134/S0965542506010118 EDN: LKCBNH
2. Y. Amirat, G.A. Chechkin, R.R. Gadyl’shin. Asymptotics for eigenelements of laplacian in domain with oscillating boundary: multiple eigenvalues // Appl. Anal. 86:7, 873-897 (2007). DOI: 10.1080/00036810701461238 EDN: WTHLYE
3. Y. Amirat, G.A. Chechkin, R.R. Gadyl’shin. Asymptotics of the solution of a Dirichlet spectral problem in a junction with highly oscillating boundary // C. R., Méc., Acad. Sci. Paris 336:9, 693-698 (2008). DOI: 10.1016/j.crme.2008.06.008
4. Y. Amirat, G.A. Chechkin, R.R. Gadyl’shin. Spectral boundary homogenization in domains with oscillating boundaries // Nonlinear Anal., Real World Appl. 11:6, 4492-4499 (2010). DOI: 10.1016/j.nonrwa.2008.11.023
5. G.F. Azhmoldaev, K.A. Bekmaganbetov, G.A. Chechkin, V.V. Chepyzhov. Homogenization of attractors to reaction-diffusion equations in domains with rapidly oscillating boundary: critical case // Netw. Heterog. Media 19:3, 1381-1401 (2024). DOI: 10.3934/nhm.2024059
6. A.V. Babin, M.I. Vishik. Attractors of Evolution Equations // North-Holland, Amsterdam (1992).
7. K.A. Bekmaganbetov, G.A. Chechkin, V.V. Chepyzhov. Weak convergence of attractors of reaction-diffusion systems with randomly oscillating coefficients // Appl. Anal. 98:1-2, 256-271 (2019). DOI: 10.1080/00036811.2017.1400538 EDN: AXZXPL
8. K.A. Bekmaganbetov, G.A. Chechkin, V.V. Chepyzhov. “Strange term” in homogenization of attractors of reaction-diffusion equation in perforated domain // Chaos Solitons Fractals 140, 110208 (2020). DOI: 10.1016/j.chaos.2020.110208 EDN: CNOORU
9. K.A. Bekmaganbetov, G.A. Chechkin, V.V. Chepyzhov, A.A. Tolemis. Homogenization of attractors to Ginzburg - Landau equations in media with locally periodic obstacles: critical case // Bull. Karaganda Univ. Math. Series 3(111), 11-27 (2023). DOI: 10.31489/2023m3/11-27
10. K.A. Bekmaganbetov, G.A. Chechkin, V.V. Chepyzhov. Homogenization of random attractors for reaction-diffusion systems // C. R., Méc., Acad. Sci. Paris. 344:11-12, 753-758 (2016). DOI: 10.1016/j.crme.2016.10.015
11. K.A. Bekmaganbetov, G.A. Chechkin, V.V. Chepyzhov, A.Yu. Goritsky. Homogenization of trajectory attractors of 3D Navier - Stokes system with randomly oscillating force // Discrete Contin. Dyn. Syst. 37:5, 2375-2393 (2017). DOI: 10.3934/dcds.2017103 EDN: YVOVFT
12. A.G. Belyaev, A.G. Mikheev, A.S. Shamaev. Diffraction of a plane wave by a rapidly-oscillating surface // Comput. Math. Math. Phys. 32:8, 1121-1133 (1992). EDN: ZZXOCZ
13. A.G. Belyaev, A.L. Piatnitski, G.A. Chechkin. Asymptotic behavior of solution for boundary-value problem in a perforated domain with oscillating boundary // Siberian Math. J. 39:4, 730-754 (1998). DOI: 10.1007/BF02673049 EDN: ZDBXQQ
14. D. Borisov, G. Cardone, L. Faella, C. Perugia. Uniform resolvent convergence for strip with fast oscillating boundary // J. Differ. Equations 255:12, 4378-4402 (2013). DOI: 10.1016/j.jde.2013.08.005
15. D.I. Borisov. Operator estimates for planar domains with irregularly curved boundary. The Dirichlet and Neumann conditions // J. Math. Sci. (N.Y.), 264:5, 562-580 (2022). DOI: 10.1007/s10958-022-06017-1 EDN: DFNQOV
16. D.I. Borisov, R.R. Suleimanov. On operator estimates for elliptic operators with mixed boundary conditions in two-dimensional domains with rapidly oscillating boundary // Math. Notes, 116:2, 182-199 (2024). DOI: 10.1134/S0001434624070149
17. G.A. Chechkin, A.L. Piatnitski. Homogenization of boundary-value problem in a locally periodic perforated domain // Appl. Anal. 71:1-4, 215-235 (1999). DOI: 10.1080/00036819908840714
18. G.A. Chechkin, A. Friedman, A.L. Piatnitski. The boundary-value problem in domains with very rapidly oscillating boundary // J. Math. Anal. Appl. 231:1, 213-234 (1999). DOI: 10.1006/jmaa.1998.6226 EDN: LFIORT
19. G.A. Chechkin, A.L. Piatnitski, A.S. Shamaev. Homogenization. Methods and Applications. Amer. Math. Soc., Providence, RI (2007).
20. G.A. Chechkin, Yu.O. Koroleva, L.-E. Persson. On the precise asymptotics of the constant in the Friedrich’s inequality for functions, vanishing on the part of the boundary with microinhomogeneous structure // J. Inequal. Appl. 2007, 034138 (2007). DOI: 10.1155/2007/34138
21. G.A. Chechkin, Yu.O. Koroleva, A. Meidell, L.E. Persson. On the Friedrichs inequality in a domain perforated along the boundary. Homogenization procedure. Asymptotics in parabolic problems // Russ. J. Math. Phys. 16:1, 1-16 (2009). DOI: 10.1134/S1061920809010014
22. T.A. Mel’nyk, G.A. Chechkin. Homogenization of a boundary-value problem in a thick three-dimensional multilevel junction // Mat. Sb. 200:3, 49-74 (2009). [Sb. Math. 200:3, 357-383 (2009).]. DOI: 10.1070/SM2009v200n03ABEH004000 EDN: QBFVDD
23. G.A. Chechkin, T.P. Chechkina, C. D’Apice, U. De Maio, T.A. Mel’nyk. Asymptotic analysis of a boundary-value problem in a cascade thick junction with a random transmission zone // Appl. Anal. 88:10-11, 1543-1562 (2009). DOI: 10.1080/00036810902994268 EDN: MWZQRR
24. G.A. Chechkin, V.V. Chepyzhov, L.S. Pankratov. Homogenization of trajectory attractors of Ginzburg - Landau equations with randomly oscillating terms // Discrete Contin. Dyn. Syst., Ser. B 23:3, 1133-1154 (2018). DOI: 10.3934/dcdsb.2018145
25. V.V. Chepyzhov, M.I. Vishik. Trajectory attractors for reaction-diffusion systems // Topol. Methods Nonlinear Anal. 7:1, 49-76 (1996). DOI: 10.12775/TMNA.1996.002
26. V.V. Chepyzhov, M.I. Vishik. Attractors for Equations of Mathematical Physics. Amer. Math. Soc., Providence, RI (2002).
27. M. Efendiev, S. Zelik. Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization // Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19:6, 961-989 (2002). DOI: 10.1016/s0294-1449(02)00115-4
28. A. Gaudiello, A. Sili. Homogenization of highly oscillating boundaries with strongly contrasting diffusivity // SIAM J. Math. Anal. 47:3, 1671-1692 (2015). DOI: 10.1137/140987225
29. V.V. Grushin, S.Yu. Dobrokhotov, Homogenization in the problem of long water waves over a bottom site with fast oscillations // Math. Notes. 95:3, 324-337 (2014). DOI: 10.1134/S0001434614030055
30. J.K. Hale, S.M. Verduyn Lunel. Averaging in infinite dimensions // J. Integral Equations Appl. 2:4, 463-494 (1990). DOI: 10.1216/jiea/1181075583
31. A.A. Ilyin. Averaging principle for dissipative dynamical systems with rapidly oscillating right- hand sides // Sb. Math. 187:5, 635-677 (1996). DOI: 10.1070/SM1996v187n05ABEH000126 EDN: LOFISN
32. V.V. Jikov, S.M. Kozlov, O.A. Oleinik. Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994).
33. V.A. Kozlov, S.A. Nazarov, The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary // St. Petersburg Math. J. 22:6, 941-983 (2011). DOI: 10.1090/S1061-0022-2011-01178-1
34. J.-L. Lions. Quelques méthodes de résolutions des problémes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969).
35. V.A. Marchenko, E.Ya. Khruslov. Homogenization of Partial Differential Equations. Birkhäuser, Boston, MA (2006). DOI: 10.1007/978-0-8176-4468-0
36. A. McMillan, R. Jones, D. Peng, G.A. Chechkin. A computational study of the influence of surface roughness on material strength // Meccanica. 53:9, 2411-2436 (2018). DOI: 10.1007/s11012-018-0830-6 EDN: UYAOKQ
37. N. Neuss, M. Neuss-Radu, A. Mikelić, Effective laws for the Poisson equation on domains with curved oscillating boundaries // Appl. Anal. 85:5, 479-502 (2006). DOI: 10.1080/00036810500340476 EDN: ARRCOZ
38. O.A. Oleinik, A.S. Shamaev, G.A. Yosifian. Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992). EDN: UCSUGD
39. E. Sanchez-Palencia. Homogenization Techniques for Composite Media // Springer-Verlag, Berlin (1987). DOI: 10.1007/3-540-17616-0
40. R. Temam. Infinite-dimensional dynamical systems in mechanics and physics. Springer-Verlag, New York (1988).
Выпуск
Другие статьи выпуска
We show that the inverse scattering transform technique can be applied to obtain the time dependence of scattering data of the Zakharov — Shabat system, which is described by the loaded nonlinear Schr ̈odinger equation in the class of fast decaying functions. In addition we prove that the Cauchy problem for the loaded nonlinear Schr ̈odinger equation is uniquely solvable in the class of rapidly decreasing functions. We provide the explicit expression of a single soliton solution for the loaded nonlinear Schr ̈odinger equation. As an example, we find the soliton solution of the considered problem for an arbitrary non–zero continuous function
The Krause mean process serves as a comprehensive model for the dynamics of opinion exchange within multi–agent system wherein opinions are represented as vectors. In this paper, we propose a framework for opinion exchange dynamics by means of the Krause mean process that is generated by a cubic doubly stochastic matrix with positive influences. The primary objective is to establish a consensus within the multi–agent system
Among several approaches towards the classical Bernoulli polynomials
Nowadays, the problem of classification of integrable nonlinear partial differential equations and their discrete analogues in 1+1 dimensions is well–studied. Within the framework of the symmetry approach, there was obtained a complete description of integrable representatives of a number of classes of equations that are interesting from the point of view of application, see [17], [34], [26], [2]. The problem of exhaustive classification of integrable equations containing a large number of independent variables remains less studied due to its extreme complexity. The symmetry approach, which has proven to be the most effective tool for classifying equations of dimension 1+1, is not quite suitable for integrable classification of multidimensional equations. As it is noted in [27], in this problem the symmetry approach loses its efficiency due to problems with nonlocalities involved in higher symmetries
Исследуются рациональные аппроксимации функций, задаваемых интегралом типа Римана — Лиувилля на отрезке [−1, 1] с плотностью, принадлежащей некоторым классам непрерывных функций. В качестве аппарата приближений выступает интеграл типа Римана — Лиувилля с плотностью, представляющей собой рациональный интегральный оператор Фурье — Чебышёва. Найдены оценки сверху приближений интеграла типа Римана — Лиувилля с ограниченной плотностью, зависящие от полюсов и положения точки на отрезке. Отдельной задачей изучаются приближения интегралов типа Римана — Лиувилля с плотностью, являющейся функцией со степенной особенностью. Получены равномерные оценки сверху приближений с определенной мажорантой, зависящей от положения точки на отрезке. Найдено асимптотическое выражение этой мажоранты, зависящее от полюсов аппроксимирующей рациональной функции. Исследован случай, когда полюсы представляют собой некоторые модификации «ньюменовских» параметров. Устанавливаются оптимальные значения параметров, при которых приближения имеют наибольшую скорость убывания. Скорость наилучших рациональных аппроксимаций рассматриваемым методом является выше в сравнении с соответствующими полиномиальными аналогами
В работе рассматриваются два вида усреднений унитарного представления группы R, построенных по некоторым последовательностям вероятностных мер на R. Первая последовательность мер обобщает равномерное распределение. Меры из этой последовательности имеют плотности в виде свертки конечного числа индикаторов отрезка. Вторая последовательность определяется экспоненциальным убыванием преобразования Фурье. Для таких усреднений получены оценки скорости сходимости по норме, зависящие от особенности спектральной меры унитарного представления в окрестности нуля и асимптотики последовательности преобразований Фурье усредняющих вероятностных мер. При этом максимальные возможные скорости являются степенными с показателем
Описан коммутант системы операторов интегрирования в пространстве Фреше
Мы предлагаем приближённый метод нахождения конформного отображения концентрического кольца на произвольную неограниченную двусвязную многоугольную область. Этот метод основан на идеях, связанных с параметрическим методом Лёвнера — Комацу. Мы рассматриваем гладкие однопараметрические семейства конформных отображений ℱ(
Издательство
- Издательство
- УФИЦ РАН
- Регион
- Россия, Уфа
- Почтовый адрес
- 450054, Республика Башкортостан, Г.О. город Уфа, Пр-кт Октября, д. № 71
- Юр. адрес
- 450054, Республика Башкортостан, Г.О. город Уфа, Пр-кт Октября, д. № 71
- ФИО
- Мартыненко Василий Борисович (Руководитель)
- E-mail адрес
- presidium@ufaras.ru
- Контактный телефон
- +7 (347) 2356022
- Сайт
- http://www.ufaras.ru