Статья: ИНТЕГРАЛЬНЫЕ НЕРАВЕНСТВА, ИНВАРИАНТНЫЕ ПРИ КОНФОРМНЫХ ПРЕОБРАЗОВАНИЯХ (2025)

Читать онлайн

Пользуясь метрикой Пуанкаре, мы определяем конформно инвариантные интегралы для гладких финитных функций, заданных в областях гиперболического типа на расширенной плоскости. Для этих интегралов, содержащих гиперболический радиус, гладкую функцию, ее градиент или лапласиан, рассматриваются конформно инвариантные аналоги неравенств типа Харди и Реллиха с константами, зависящими от области. Мы даем явные оценки констант, пользуясь числовыми характеристиками области, а именно, максимальными модулями области и геометрической константой, входящей в линейное гиперболическое изопериметрическое неравенство. В статье нами доказаны несколько новых утверждений. В частности, обоснован критерий положительности констант для конечно–связных областей гиперболического типа и доказаны несколько интегральных неравенств, универсальных в том смысле, что эти неравенства не содержат неопределенных констант и справедливы в любой области гиперболического типа. В начале статьи кратко изложены свойства гиперболического радиуса, а также описаны несколько родственных результатов. В частности, указаны результаты Шмидта, Оссермана, Фернандеса и Родригеса по гиперболическим изопериметрическим неравенствам и их применениям, дана формула Элстродта — Паттерсона — Салливана для критических показателей сходимости рядов Пуанкаре — Дирихле, а также приведен результат Карлесона и Гамелина по максимальным модулям области с равномерно совершенной границей

Ключевые фразы: метрика пуанкаре, КОНФОРМНОЕ ОТОБРАЖЕНИЕ, изопериметрическое неравенство, неравенство типа харди, оператор лапласа
Автор (ы): Авхадиев Фарит Габидинович
Журнал: УФИМСКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ

Предпросмотр статьи

Идентификаторы и классификаторы

SCI
Математика
УДК
517.5. Теория функций
Для цитирования:
АВХАДИЕВ Ф. Г. ИНТЕГРАЛЬНЫЕ НЕРАВЕНСТВА, ИНВАРИАНТНЫЕ ПРИ КОНФОРМНЫХ ПРЕОБРАЗОВАНИЯХ // УФИМСКИЙ МАТЕМАТИЧЕСКИЙ ЖУРНАЛ. 2025. Т. 17 № 1
Текстовый фрагмент статьи