Современный дисплей пилота гражданского самолета основан на новой идеологии интерфейса и позволяет улучшить восприятие полетной информации из нескольких источников за счет ее объединения на одном многофункциональном дисплее. В работе рассматриваются вопросы реализации многооконной визуализации дисплея пилота при использовании OpenGL SC с аппаратным ускорением. Предложен алгоритм компоновки информации на дисплее, позволяющий применять только одно GPU устройство, доступное на борту самолета. Подробно изложен подход адаптации и модификации пакета Mesa с открытым программным кодом для получения сертифицируемого драйвера GPU. Особое внимание уделено технологии адаптации открытых кодов пакета к операционной системе реального времени и к требованиям к системам, критичным для безопасности. Реализация предложенного подхода предназначена для работы под управлением операционной системы реального времени JetOS в системах визуализации бортовых комплексов гражданской авиации. Описанная реализация многооконной визуализации предполагает в дальнейшем ее сертификацию для систем, критичных для безопасности.
Идентификаторы и классификаторы
- eLIBRARY ID
- 46621836
В последние десятилетия значительно усложнились кабины экипажей гражданских самолетов. Современная техника позволяет показывать пилоту больше информации об авиационном оборудовании и полетной ситуации. Увеличение вместимости пассажирских судов и продолжительности полетов в сложных метеоусловиях также увеличивают психологическую нагрузку на пилотов. Это потребовало разработки новой концепции дисплея. Соответственно, и индикаторы, и компоновка панели дисплея должны быть удобными для пользователя, чтобы улучшить взаимодействие между пилотом и летательным аппаратом [1, 2]. В связи с этим вопросы проектирования и внедрения приборов в кабину экипажа имеют большое значение с точки зрения обеспечения безопасной и эффективной работы пилотов.
C внедрением электронных систем управления полетом современный самолет получил “стеклянную кабину”. Эта новая идеология интерфейса позволяет улучшить восприятие полетных данных [3] за счет объединения важной информации на одном многофункциональном дисплее, который обеспечивает интегрированное, легко понятное изображение самолета. В настоящее время информация из нескольких источников визуализируется сразу на одном большом экране (например, приборная панель самолета Boeing 737 MAX, показанная на рис. 1). Кроме того, дисплей можно настраивать и отображать разную информацию в разных сегментах полета.
Список литературы
- Senol M.B. A new optimization model for design of traditional cockpit interfaces, Aircraft Engineering and Aerospace Technology. 2020. V. 92. № 3. P. 404-417. DOI: 10.1108/AEAT-04-2019-0068
- Thomas P., Biswas P., Langdon P. State-of-the-Art and Future Concepts for Interaction in Aircraft Cockpits, Lecture Notes in Computer Science. 2015. V. 9176. P. 538-549. DOI: 10.1007/978-3-319-20681-3_51
- Kal’avsky P., Rozenberg R., Mikula B., Zgodavova Z. Pilots’ Performance in Changing from Analogue to Glass Cockpits, In Proc. of the 22nd Int. Scientific Conf. on Transport Means (Transport Means). 2018. P. 1104-1109.
- Федосов Е.А. Проект создания нового поколения интегрированной модульной авионики с открытой архитектурой. Полет. 2008. № 8. С. 15-22. EDN: KBACXX
- Федосов Е.А., Ковернинский И.В., Кан А.В., Солоделов Ю.А. Применение операционных систем реального времени в интегрированной модульной авионики. OSDAY 2015, http://osday.ru/solodelov.html. EDN: UKNVCN
- Ananda C.M., Nair S., Mainak G. ARINC 653 API and its application - An insight into Avionics System Case Study. Defence Science Journal. V. 63. № 2. P. 223-229. DOI: 10.14429/dsj.63.4268
- DO-178C Software Considerations in Airborne Systems and Equipment Certification. http://www.rtca.org/store_product.asp?prodid=803.
- Маллачиев К.М., Пакулин Н.В., Хорошилов А.В. Устройство и архитектура операционной системы реального времени. Труды ИСП РАН. 2016. Т. 28. Вып. 2. С. 181-192. DOI: 10.15514/ISPRAS-2016-28(2)-12 EDN: WHMEPT
- Барладян Б.Х., Волобой А.Г., Галактионов В.А., Князь В.В., Ковернинский И.В., Солоделов Ю.А., Фролов В.А., Шапиро Л.З. Эффективная реализация OpenGL SC для авиационных встраиваемых систем // Программирование. 2018. № 4. С. 3-10. DOI: 10.31857/S013234740000519-5 EDN: YAMNZR
-
Барладян Б.Х., Шапиро Л.З., Малачиев К.А., Хорошилов А.И., Солоделов Ю.А., Волобой А.Г., Галактионов В.А., Ковернинский И.В. Система визуализации для авиационной ОС реального времени JetOS. Труды Института системного программирования РАН. 2020. Т. 32. Вып. 1. С. 57-70. DOI: 10.15514/ISPRAS-2020-32(1)-3 EDN: JJSOCY
-
EGL_EXT_compositor http://www.coreavi.com/sites/default/files/coreavi_product_brief_-_egl_ext_compositor.pdf.
-
Ansys SCADE Display Capabilities https://www.ansys.com/products/embedded-software/ansys-scade-display/scade-display-capabilities.
-
Baek N. and Lee H. OpenGL ES 1.1 Implementation Based on OpenGL, Multimedia Tools and Applications. 2012. V. 57. № 3. P. 669-685.
-
Baek N., Lee H. OpenGL SC Implementation over an OpenGL ES 1.1 Graphics Board, 2012 IEEE International Conference on Multimedia & Expo Workshops (ICMEW 2012). P. 671-671. DOI: 10.1109/ICMEW.2012.127
-
Baek N. and Kim K.J., Design and implementation of OpenGL SC 2.0 rendering pipeline. Cluster Computing. 2019. V. 22. P. S931-S936. DOI: 10.1007/s10586-017-1111-1
-
The Mesa 3D Graphics Library. https://www.mesa3d.org.
-
Barladian B., Deryabin N., Voloboy A., Galaktionov V., Shapiro L. High Speed Visualization in the JetOS Aviation Operating System Using Hardware Acceleration, CEUR Workshop Proceedings. 2020. V. 2744. Proc. of the 30th International Conference on Computer Graphics and Vision. pp. short3-1-short3-9. DOI: 10.51130/graphicon-2020-2-4-3
-
Barladian B.Kh., Shapiro L.Z., Mallachiev K.M., Khoroshilov A.V., Solodelov Y.A., Voloboy A.G., Galaktionov V.A., Koverninskiy I.V. Multi-windows rendering using software OpenGL in avionics embedded systems // CEUR Workshop Proceedings. V. 2485. Proc. of the 29th International Conference on Computer Graphics and Vision, 2019. P. 28-31. DOI: 10.30987/graphicon-2019-2-28-31 EDN: IDJGDS
Выпуск
ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ
ПАРАЛЛЕЛЬНОЕ И РАСПРЕДЕЛЕННОЕ ПРОГРАММИРОВАНИЕ
ЯЗЫКИ, КОМПИЛЯТОРЫ И СИСТЕМЫ ПРОГРАММИРОВАНИЯ
КОМПЬЮТЕРНАЯ ГРАФИКА И ВИЗУАЛИЗАЦИЯ
МНОГООКОННАЯ ВИЗУАЛИЗАЦИЯ АВИАЦИОННОГО ДИСПЛЕЯ С ИСПОЛЬЗОВАНИЕМ АППАРАТНОГО УСКОРЕНИЯ
АНАЛИЗ ДАННЫХ
Другие статьи выпуска
В статье рассматривается поиск ошибок помеченных данных в исходном коде программ, т.е. ошибок, вызванных небезопасным использованием данных, полученных из внешних источников, которые потенциально могут быть изменены злоумышленником. В качестве основы использовался межпроцедурный статический анализатор Svace. Анализатор осуществляет как поиск дефектов в программе, так и поиск подозрительных мест, в которых логика программы может быть нарушена. Целью является найти как можно больше ошибок при приемлемой скорости и низком уровне ложных срабатываний (<20–35%). Для поиска ошибок Svace с помощью компилятора строит низкоуровневое типизированное промежуточное представление, которое подается на вход основному анализатору SvEng. Анализатор строит граф вызовов, после чего выполняет анализ на основе резюме. При таком анализе функции обходятся в соответствии с графом вызовов, начиная с листьев. После анализа функции создается ее резюме, которое затем будет использовано для анализа инструкций вызова. Анализ имеет как высокую скорость, так и хорошую масштабируемость. Внутрипроцедурный анализ основан на символьном выполнении с объединением состояний в точках слияния путей. Для отсеивания несуществующих путей для некоторых детекторов может использоваться SMT-решатель. При этом SMT-решатель вызывается, только если есть подозрение на ошибку. Анализатор был расширен возможностью поиска дефектов, связанных с помеченными данными. Детекторы реализованы в виде плагинов по схеме источник-приемник. В качестве источников используются вызовы библиотечных функций, получающих данные извне программы, а также аргументы функции main. Приемниками являются обращение к массивам, использование переменных как шага или границы цикла, вызов функций, требующих проверенных аргументов. Реализованы детекторы, покрывающие большинство возможных типов уязвимостей, для непроверенных целых чисел и строк. Для оценки покрытия использовался проект Juliet. Уровень пропусков составил от 46.31% до 81.17% при незначительном количестве ложных срабатываний.
Модель памяти языка программирования определяет семантику многопоточных программ, создаваемых на этом языке и оперирующих с разделяемой памятью. Наиболее известна модель последовательной согласованности, которая является слишком строгой, запрещая многие сценарии поведения, наблюдаемые при исполнении программ на современных процессорах. Попытки формально описать эти сценарии привели к возникновению так называемых слабых моделей памяти. В последние годы было предложено значительное количество слабых моделей памяти для различных языков программирования. Эти модели предлагают различные компромиссы относительно простоты/сложности рассуждений о поведении многопоточных программ и возможностей их оптимизации. Цель данной статьи заключается в обзоре существующих моделей памяти языков программирования и выработке общих рекомендаций по выбору/созданию модели памяти при создании/стандартизации языков программирования, а также при разработке компиляторов. Для данного обзора мы рассмотрели более 2000 статей, найденных по ключевым словам “Relaxed Memory Models”, “Weak Memory Models”, и “Weak Memory Consistency” поисковой системой Google Scholar. Используя разные критерии, мы сузили это множество до 40 статей, предлагающих и описывающих модели памяти языков программирования. Мы разделили эти модели на шесть классов и проанализировали их свойства и ограничения. В заключение мы показали, как дизайн языка программирования влияет на выбор модели памяти и обсудили возможные направления дальнейших исследований в этой области.
В статье описывается программная реализация быстрого алгоритма поиска распределенных рассеивателей для задачи построения скоростей смещений земной поверхности на базе платформы Apache Spark. Рассматривается полная схема расчета скоростей смещений методом постоянных рассеивателей (PS). Предложенный алгоритм интегрируется в схему после этапа совмещения с субпиксельной точностью стека изображений временной серии радарных снимков космического аппарата Sentinel-1. Поиск распределенных рассеивателей происходит независимо в окнах сдвига по всей площади снимка. Наличие последних определяется путем предположения о гомогенности пар выборок в окне, составленных из векторов комплексных значений пикселей в каждом из N изображений. Данное предположение вытекает из выполнимости критерия Колмогорова–Смирнова для каждой из пар. Для оценки значений фаз гомогенных пикселей решается задача максимизации. Показано, что предложенный алгоритм не является итерационным и может быть реализован в парадигме параллельных вычислений. Применяемая платформа Apache Spark позволила распределенно обрабатывать массивы стека радарных данных (от 60 изображений) в памяти на большом количестве физических узлов в сетевой среде. При этом, время поиска распределенных рассеивателей удалось снизить в среднем в 10 раз по сравнению с однопроцессорной реализацией алгоритма. Приведены сравнительные результаты тестирования вычислительной системы на демонстрационном кластере. Алгоритм реализован на языке программирования Python c подробным описанием объектов и методов алгоритма.
Разработан метод контроля и восстановления целостности данных в многомерных системах хранения. Предложенные конструкции контроля и восстановления целостности многомерных массивов данных основаны на агрегировании методов криптографии и помехоустойчивого кодирования. На основе представленных криптокодовых конструкций показана особенность комплексирования существующих методов, заключающаяся в повышении вероятности обеспечения целостности информации в условиях разрушающих воздействий злоумышленника и среды для многомерных систем хранения данных. Получены расчетные данные вероятности обнаружения и исправления возникающих в многомерных массивах данных ошибок, приводящих к нарушению их целостности, посредством разработанного метода.
Издательство
- Издательство
- ИЗДАТЕЛЬСТВО НАУКА
- Регион
- Россия, Москва
- Почтовый адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- Юр. адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- ФИО
- Николай Николаевич Федосеенков (Директор)
- E-mail адрес
- info@naukapublishers.ru
- Контактный телефон
- +7 (495) 2767735