В статье рассматривается поиск ошибок помеченных данных в исходном коде программ, т.е. ошибок, вызванных небезопасным использованием данных, полученных из внешних источников, которые потенциально могут быть изменены злоумышленником. В качестве основы использовался межпроцедурный статический анализатор Svace. Анализатор осуществляет как поиск дефектов в программе, так и поиск подозрительных мест, в которых логика программы может быть нарушена. Целью является найти как можно больше ошибок при приемлемой скорости и низком уровне ложных срабатываний (<20–35%). Для поиска ошибок Svace с помощью компилятора строит низкоуровневое типизированное промежуточное представление, которое подается на вход основному анализатору SvEng. Анализатор строит граф вызовов, после чего выполняет анализ на основе резюме. При таком анализе функции обходятся в соответствии с графом вызовов, начиная с листьев. После анализа функции создается ее резюме, которое затем будет использовано для анализа инструкций вызова. Анализ имеет как высокую скорость, так и хорошую масштабируемость. Внутрипроцедурный анализ основан на символьном выполнении с объединением состояний в точках слияния путей. Для отсеивания несуществующих путей для некоторых детекторов может использоваться SMT-решатель. При этом SMT-решатель вызывается, только если есть подозрение на ошибку. Анализатор был расширен возможностью поиска дефектов, связанных с помеченными данными. Детекторы реализованы в виде плагинов по схеме источник-приемник. В качестве источников используются вызовы библиотечных функций, получающих данные извне программы, а также аргументы функции main. Приемниками являются обращение к массивам, использование переменных как шага или границы цикла, вызов функций, требующих проверенных аргументов. Реализованы детекторы, покрывающие большинство возможных типов уязвимостей, для непроверенных целых чисел и строк. Для оценки покрытия использовался проект Juliet. Уровень пропусков составил от 46.31% до 81.17% при незначительном количестве ложных срабатываний.
Идентификаторы и классификаторы
- eLIBRARY ID
- 46621837