Ангедония, и в частности социальная ангедония – важный психопатологический симптом, играющий ключевую роль в развитии депрессий и шизофрении. У здоровых людей уровень социальной ангедонии ассоциирован с изменением структуры, активации и функциональных связей различных участков префронтальной коры, височной и височно-теменной областей, а также базальных ядер. Для пациентов с шизофренией ключевые фМРТ-корреляты социальной ангедонии локализуются в височной доле. В отношении лиц с депрессией и другими психическими расстройствами полученные результаты недостаточны для обобщения. В отличие от физической ангедонии, социальная не демонстрирует специфичной ассоциации с объемом и активацией прилежащего ядра.
Идентификаторы и классификаторы
- SCI
- Биология
У молодых людей с высоким уровнем социальной ангедонии усилены функциональные связи ретроспленальной коры с правой веретенообразной извилиной [140], ретроспленальной коры с корой островка в обоих полушариях и со средней лобной извилиной и парагиппокампальной области со средней лобной извилиной [145], прилежащего ядра со средней лобной извилиной, вентрального хвостатого ядра с островковой корой и передней дорсальной скорлупы с верхней лобной извилиной [131] в состоянии покоя. Однако у них слабее функциональные связи гиппокампа с парагиппокампальной корой [145] и прилежащего ядра с задней поясной извилиной [131]. У здоровых людей с социальной ангедонией сеть социальных функций более дифференцирована; усилены ассоциации веретенообразных извилин, миндалин, левого предклинья, правой нижней орбитофронтальной коры и отдельных областей мозжечка [148].
Список литературы
1. Аведисова А.С., Захарова К.В., Гаскин В.В. и др. Клинические и нейровизуализационные характеристики апатической депрессии // Журн. неврологии и психиатрии. 2017. Т. 117. № 8. С. 11–17. DOI: 10.17116/jnevro20171178111-17 EDN: ZEVSSN
2. Abraham E., Wang Y., Svob C. et al. Organization of the social cognition network predicts future depression and interpersonal impairment: a prospective family-based study // Neuropsychopharmacology. 2022. V. 47. № 2. P. 531–542. DOI: 10.1038/s41386-021-01065-8 EDN: LIIONH
3. Alacreu-Crespo A., Olié E., Le Bars E. et al. Prefrontal activation in suicide attempters during decision making with emotional feedback // Translational Psychiatry. 2020. V. 10. № 1. e313. -z. DOI: 10.1038/s41398-020-00995 EDN: ONCHIX
4. Bang M., Kang J.I., Kim S.J. et al. Reduced DNA Methylation of the Oxytocin Receptor Gene Is Associated With Anhedonia-Asociality in Women With Recent-Onset Schizophrenia and Ultra-high Risk for Psychosis // Schizophrenia Bulletin. 2019. V. 45. № 6. P. 1279–1290. DOI: 10.1093/schbul/sbz016
5. Borsini A., Wallis A.J., Zunszain P. et al. Characterizing anhedonia: A systematic review of neuroimaging across the subtypes of reward processing deficits in depression // Cognitive, Affective, & Behavioral Neuroscience. 2020. V. 20. № 4. P. 816–841. DOI: 10.3758/s13415-020-00804-6 EDN: TNBCEG
6. Bracht T., Linden D., Keedwell P. A review of white matter microstructure alterations of pathways of the reward circuit in depression // J. Affective Disorders. 2015. V. 187. P. 45–53. DOI: 10.1016/j.jad.2015.06.041 EDN: VEWYVR
7. Bradley K.A., Alonso C.M., Mehra L.M. et al. Elevated striatal γ-aminobutyric acid in youth with major depressive disorder // Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2018. V. 86. P. 203–210. DOI: 10.1016/j.pnpbp.2018.06.004
8. Brakowski J., Manoliu A., Homan P. et al. Aberrant striatal coupling with default mode and central executive network relates to self-reported avolition and anhedonia in schizophrenia // J. Psychiatric Research. 2022. V. 145. P. 263–275. DOI: 10.1016/j.jpsychires.2020.10.047 EDN: ZTCJOB
9. Brandt I.M., Köhler-Forsberg K., Ganz M. et al. Reward processing in major depressive disorder and prediction of treatment response – Neuropharm study // European Neuropsychopharmacology. 2021. V. 44. P. 23–33. DOI: 10.1016/j.euroneuro.2020.12.010 EDN: BJWIBA
10. Brown V.M., Zhu L., Solway A. et al. Reinforcement Learning Disruptions in Individuals With Depression and Sensitivity to Symptom Change Following Cognitive Behavioral Therapy // JAMA Psychiatry. 2021. V. 78. № 10. P. 1113–1122. DOI: 10.1001/jamapsychiatry.2021.1844 EDN: OFIZYL
11. Burklund L.J., Craske M.G., Taylor S.E., Lieberman M.D. Altered emotion regulation capacity in social phobia as a function of comorbidity // Social Cognitive & Affective Neuroscience. 2015. V. 10. № 2. P. 199–208. DOI: 10.1093/scan/nsu058
12. Cáceda R., James G.A., Stowe Z.N. et al. The neural correlates of low social integration as a risk factor for suicide // European Archives of Psychiatry and Clinical Neuroscience. 2020. V. 270. № 5. P. 619–631. DOI: 10.1007/s00406-019-00990-6 EDN: XZGVJI
13. Casement M.D., Guyer A.E., Hipwell A.E. et al. Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms // Developmental Cognitive Neuroscience. 2014. V. 8. P. 18–27. DOI: 10.1016/j.dcn.2013.12.003
14. Cernasov P., Walsh E.C., Kinard J.L. et al. Multilevel growth curve analyses of behavioral activation for anhedonia (BATA) and mindfulness-based cognitive therapy effects on anhedonia and resting-state functional connectivity: Interim results of a randomized trial // Journal of Affective Disorders. 2021. V. 292. P. 161–171. DOI: 10.1016/j.jad.2021.05.054 EDN: IUOUTO
15. Chanel G., Pichon S., Conty L. et al. Classification of autistic individuals and controls using cross-task characterization of fMRI activity // Neuroimage: Clinical. 2015. V. 10. P. 78–88. DOI: 10.1016/j.nicl.2015.11.010
16. Chiapponi C., Piras F., Piras F. et al. GABA System in Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies // Frontiers in Psychiatry. 2016. V. 7. e61. DOI: 10.3389/fpsyt.2016.00061
17. Choi S.-H., Lee H., Ku J. et al. Neural basis of anhedonia as a failure to predict pleasantness in schizophrenia // World J. Biological Psychiatry. 2014. V. 15. № 7. P. 525–533. DOI: 10.3109/15622975.2013.819121
18. Costi S., Morris L.S., Collins A. et al. Peripheral immune cell reactivity and neural response to reward in patients with depression and anhedonia // Translational Psychiatry. 2021. V. 11. № 1. e565. DOI: 10.1038/s41398-021-01668-1 EDN: CZBOSQ
19. Cressman V.L., Schobel S.A., Steinfeld S. et al. Anhedonia in the psychosis risk syndrome: associations with social impairment and basal orbitofrontal cortical activity // NPJ Schizophrenia. 2015. V. 1. e15020. DOI: 10.1038/npjschz.2015.20
20. Cusi A.M., Nazarov A., Holshausen K. et al. Systematic review of the neural basis of social cognition in patients with mood disorders // J. Psychiatry & Neuroscience. 2012. V. 37. № 3. P. 154–169. DOI: 10.1503/jpn.100179 EDN: PNSWNN
21. Dennison M.J., Sheridan M.A., Busso D.S. et al. Neurobehavioral markers of resilience to depression amongst adolescents exposed to child abuse // J. Abnormal Psychology. 2016. V. 125. № 8. P. 1201–1212. DOI: 10.1037/abn0000215
22. Derntl B., Seidel E.-M., Eickhoff S.B. et al. Neural correlates of social approach and withdrawal in patients with major depression // Social Neuroscience. 2011. V. 6. № 5–6. P. 482–501. DOI: 10.1080/17470919.2011.579800 EDN: PNSWMT
23. Diaz A.P., Fernandes B.S., Teixeira A.L. et al. White matter microstructure associated with anhedonia among individuals with bipolar disorders and high-risk for bipolar disorders // J. Affective Disorders. 2022. V. 300. P. 91–98. DOI: 10.1016/j.jad.2021.12.037 EDN: EVQZAM
24. Diederichs C., DeMayo M.M., Cole J. et al. Intermittent Theta-Burst Stimulation Transcranial Magnetic Stimulation Increases GABA in the Medial Prefrontal Cortex: A Preliminary Sham-Controlled Magnetic Resonance Spectroscopy Study in Acute Bipolar Depression // Frontiers in Psychiatry. 2021. V. 12. e665402. DOI: 10.3389/fpsyt.2021.665402 EDN: OTTAXL
25. Dodell-Feder D., Tully L.M., Lincoln S.H., Hooker C.I. The neural basis of theory of mind and its relationship to social functioning and social anhedonia in individuals with schizophrenia // Neuroimage: Clinical. 2013. V. 4. P. 154–163. DOI: 10.1016/j.nicl.2013.11.006
26. Domschke K., Dannlowski U., Ohrmann P. et al. Cannabinoid receptor 1 (CNR1) gene: impact on antidepressant treatment response and emotion processing in major depression // European Neuropsychopharmacology. 2008. V. 18. № 10. P. 751–759. DOI: 10.1016/j.euroneuro.2008.05.003
27. Dotson V.M., Taiwo Z., Minto L.R. et al. Orbitofrontal and Cingulate Thickness Asymmetry Associated with Depressive Symptom Dimensions // Cognitive, Affective, & Behavioral Neuroscience. 2021. V. 21. № 6. P. 1297–1305. DOI: 10.3758/s13415-021-00923-8 EDN: DYUSIX
28. Dowd E.C., Barch D.M. Pavlovian reward prediction and receipt in schizophrenia: relationship to anhedonia // PLoS One. 2012. V. 7. № 5. e35622. DOI: 10.1371/journal.pone.0035622
29. Dowd E.C., Frank M.J., Collins A. et al. Probabilistic Reinforcement Learning in Patients With Schizophrenia: Relationships to Anhedonia and Avolition // Biological Psychiatry: Cognitive Neuroscience & Neuroimaging. 2016. V. 1. № 5. P. 460–473. DOI: 10.1016/j.bpsc.2016.05.005
30. Du H., Xia J., Fan J. et al. Spontaneous neural activity in the right fusiform gyrus and putamen is associated with consummatory anhedonia in obsessive compulsive disorder // Brain Imaging & Behavior. In print. DOI: 10.1007/s11682-021-00619-0
31. Duprat R., Wu G.-R., De Raedt R., Baeken C. Accelerated iTBS treatment in depressed patients differentially modulates reward system activity based on anhedonia // World Journal of Biological Psychiatry. 2018. V. 19. № 7. P. 497–508. DOI: 10.1080/15622975.2017.1355472
32. Eckstrand K.L., Flores Jr. L.E., Cross M. et al. Social and Non-social Reward Processing and Depressive Symptoms Among Sexual Minority Adolescents // Frontiers in Behavioral Neuroscience. 2019. V. 13. e209. DOI: 10.3389/fnbeh.2019.00209
33. Eckstrand K.L., Forbes E.E., Bertocci M.A. et al. Anhedonia Reduction and the Association Between Left Ventral Striatal Reward Response and 6-Month Improvement in Life Satisfaction Among Young Adults // JAMA Psychiatry. 2019. V. 76. № 9. P. 958–965. DOI: 10.1001/jamapsychiatry.2019.0864
34. Ely B.A., Nguyen T.N.B., Tobe R.H. et al. Multimodal Investigations of Reward Circuitry and Anhedonia in Adolescent Depression // Frontiers in Psychiatry. 2021. V. 12. e678709. DOI: 10.3389/fpsyt.2021.678709 EDN: TZXDPL
35. Enneking V., Krüssel P., Zaremba D. et al. Social anhedonia in major depressive disorder: a symptom-specific neuroimaging approach // Neuropsychopharmacology. 2019. V. 44. № 5. P. 883–889. DOI: 10.1038/s41386-018-0283-6 EDN: XACBBA
36. Fani N., Michopoulos V., van Rooij S.J.H. et al. Structural connectivity and risk for anhedonia after trauma: A prospective study and replication // Journal of Psychiatric Research. 2019. V. 116. P. 34–41. DOI: 10.1016/j.jpsychires.2019.05.009
37. Ferenczi E.A., Zalocusky K.A., Liston C. et al. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior // Science. 2016. V. 351. № 6268. aac9698. DOI: 10.1126/science.aac9698
38. Frewen P.A., Dozois D.J.A., Lanius R.A. Assessment of anhedonia in psychological trauma: psychometric and neuroimaging perspectives // European J. Psychotraumatology. 2012. e3. DOI: 10.3402/ejpt.v3i0.8587
39. Frey A.-L., McCabe C. Effects of serotonin and dopamine depletion on neural prediction computations during social learning // Neuropsychopharmacology. 2020. V. 45. № 9. P. 1431–1437. -z. DOI: 10.1038/s41386-020-0678 EDN: WUMDKT
40. Frey A.-L., McCabe C. Impaired social learning predicts reduced real-life motivation in individuals with depression: A computational fMRI study // J. Affective Disorders. 2020. V. 263. P. 698–706. DOI: 10.1016/j.jad.2019.11.049 EDN: XNWZJE
41. Fusar-Poli P., Placentino A., Carletti F. et al. Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies // J. Psychiatry & Neuroscience. 2009. V. 34. № 6. P. 418–432.
42. Gabbay V., Bradley K.A., Mao X. et al. Anterior cingulate cortex γ-aminobutyric acid deficits in youth with depression // Translational Psychiatry. 2017. V. 7. № 8. e1216. DOI: 10.1038/tp.2017.187
43. Gabbay V., Mao X., Klein R.G. et al. Anterior cingulate cortex γ-aminobutyric acid in depressed adolescents: relationship to anhedonia // Archives of General Psychiatry. 2012. V. 69. № 2. P. 139–149. DOI: 10.1001/archgenpsychiatry.2011.131 EDN: PLYHIJ
44. Geller W.N., Liu K., Warren S.L. Specificity of anhedonic alterations in resting-state network connectivity and structure: A transdiagnostic approach // Psychiatry Research: Neuroimaging. 2021. V. 317. e111349. DOI: 10.1016/j.pscychresns.2021.111349 EDN: IGVLYE
45. Germine L.T., Garrido L., Bruce L., Hooker C. Social anhedonia is associated with neural abnormalities during face emotion processing // Neuroimage. 2011. V. 58. № 3. P. 935–945. DOI: 10.1016/j.neuroimage.2011.06.059
46. Geugies H., Mocking R.J.T., Figueroa C.A. et al. Impaired reward-related learning signals in remitted unmedicated patients with recurrent depression // Brain. 2019. V. 142. № 8. P. 2510–2522. DOI: 10.1093/brain/awz167 EDN: MAGZQD
47. Gong L., He C., Zhang H. et al. Disrupted reward and cognitive control networks contribute to anhedonia in depression // J. Psychiatric Research. 2018. V. 103. P. 61–68. DOI: 10.1016/j.jpsychires.2018.05.010
48. Gradin V.B., Pérez A., MacFarlane J.A. et al. Abnormal brain responses to social fairness in depression: an fMRI study using the Ultimatum Game // Psychological Medicine. 2015. V. 45. № 6. P. 1241–1251. DOI: 10.1017/S0033291714002347
49. Gradin V.B., Pérez A., MacFarlane J.A. et al. Neural correlates of social exchanges during the Prisoner’s Dilemma game in depression // Psychological Medicine. 2016. V. 46. № 6. P. 1289–1300. DOI: 10.1017/S0033291715002834
50. Greening S.G., Osuch E.A., Williamson P.C., Mitchell D.G.V. Emotion-related brain activity to conflicting socio-emotional cues in unmedicated depression // Journal of Affective Disorders. 2013. V. 150. № 3. P. 1136–1141. DOI: 10.1016/j.jad.2013.05.053
51. Groschwitz R.C., Plener P.L., Groen G. et al. Differential neural processing of social exclusion in adolescents with non-suicidal self-injury: An fMRI study // Psychiatry Research: Neuroimaging. 2016. V. 255. P. 43–49. DOI: 10.1016/j.pscychresns.2016.08.001
52. Guffanti G., Kumar P., Admon R. et al. Depression genetic risk score is associated with anhedonia-related markers across units of analysis // Translational Psychiatry. 2019. V. 9. № 1. e236. DOI: 10.1038/s41398-019-0566-7 EDN: DFOVOE
53. Günther V., Lindner C., Dannlowski U. et al. Amygdalar Gray Matter Volume and Social Relating in Schizophrenia // Neuropsychobiology. 2016. V. 74. № 3. P. 139–143. DOI: 10.1159/000458528
54. Günther V., Zimmer J., Kersting A. et al. Automatic processing of emotional facial expressions as a function of social anhedonia // Psychiatry Research: Neuroimaging. 2017. V. 270. P. 46–53. DOI: 10.1016/j.pscychresns.2017.10.002
55. Han S., Cui Q., Wang X. et al. The anhedonia is differently modulated by structural covariance network of NAc in bipolar disorder and major depressive disorder // Progress in Neuropsychopharmacology & Biological Psychiatry. 2020. V. 99. e109865. DOI: 10.1016/j.pnpbp.2020.109865 EDN: GMSRZT
56. Hao L., Yang J., Wang Y. et al. Neural correlates of causal attribution in negative events of depressed patients: Evidence from an fMRI study // Clinical Neurophysiology. 2015. V. 126. № 7. P. 1331–1337. DOI: 10.1016/j.clinph.2014.10.146
57. Harnett N.G., Stevens J.S., van Rooij S.J.H. et al. Multimodal structural neuroimaging markers of risk and recovery from posttrauma anhedonia: A prospective investigation // Depression & Anxiety. 2021. V. 38. № 1. P. 79–88. DOI: 10.1002/da.23104 EDN: YENPKM
58. Harvey P.-O., Pruessner J., Czechowska Y., Lepage M. Individual differences in trait anhedonia: a structural and functional magnetic resonance imaging study in non-clinical subjects // Molecular Psychiatry. 2007. V. 12. № 8. P. 767–775. DOI: 10.1038/sj.mp.4002021
59. Healey K.L., Morgan J., Musselman S.C. et al. Social anhedonia and medial prefrontal response to mutual liking in late adolescents // Brain & Cognition. 2014. V. 89. P. 39–50. DOI: 10.1016/j.bandc.2013.12.004
60. Hooker C.I., Benson T.L., Gyurak A. et al. Neural activity to positive expressions predicts daily experience of schizophrenia-spectrum symptoms in adults with high social anhedonia // J. Abnormal Psychology. 2014. V. 123. № 1. P. 190–204. DOI: 10.1037/a0035223
61. Keedwell P.A., Andrew C., Williams S.C.R. et al. The neural correlates of anhedonia in major depressive disorder // Biological Psychiatry. 2005. V. 58. № 11. P. 843–853. DOI: 10.1016/j.biopsych.2005.05.019
62. Keedwell P.A., Chapman R., Christiansen K. et al. Cingulum white matter in young women at risk of depression: the effect of family history and anhedonia // Biological Psychiatry. 2012. V. 72. P. 296–302. DOI: 10.1016/j.biopsych.2012.01.022
63. Keller J., Young C.B., Kelley E. et al. Trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and paralimbic reward pathways // J. Psychiatric Research. 2013. V. 47. № 10. P. 1319–1328. DOI: 10.1016/j.jpsychires.2013.05.015
64. Kim B.-H., Kim H.E., Lee J.S., Kim J.-J. Anhedonia Relates to the Altered Global and Local Grey Matter Network Properties in Schizophrenia // J. Clinical Medicine. 2021. V. 10. № 7. e1395. DOI: 10.3390/jcm10071395 EDN: HSHZLJ
65. Kim K., Johnson M.K. Activity in ventromedial prefrontal cortex during self-related processing: positive subjective value or personal significance? // Social Cognitive & Affective Neuroscience. 2015. V. 10. № 4. P. 494–500. DOI: 10.1093/scan/nsu078
66. Kini P., Wong J., McInnis S. et al. The effects of gratitude expression on neural activity // Neuroimage. 2016. V. 128. P. 1–10. DOI: 10.1016/j.neuroimage.2015.12.040
67. Kirschner M., Schmidt A., Hodzic-Santor B. et al. Orbitofrontal-Striatal Structural Alterations Linked to Negative Symptoms at Different Stages of the Schizophrenia Spectrum // Schizophrenia Bulletin. 2021. V. 47. № 3. P. 849–863. DOI: 10.1093/schbul/sbaa169 EDN: BAHFKZ
68. Koeppel C.J., Herrmann T., Weidner K. et al. Same salience, different consequences: Disturbed inter-network connectivity during a social oddball paradigm in major depressive disorder // Neuroimage: Clinical. 2021. V. 31. e102731. DOI: 10.1016/j.nicl.2021.102731 EDN: CKDOEB
69. Krohne L.G., Wang Y., Hinrich J.L. et al. Classification of social anhedonia using temporal and spatial network features from a social cognition fMRI task // Human Brain Mapping. 2019. V. 40. № 17. P. 4965–4981. DOI: 10.1002/hbm.24751
70. Krystal A.D., Pizzagalli D.A., Smoski M. et al. A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia // Nature Medicine. 2020. V. 26. № 5. P. 760–768. DOI: 10.1038/s41591-020-0806-7 EDN: JDNRAN
71. Kujawa A., Burkhouse K.L. Vulnerability to Depression in Youth: Advances from Affective Neuroscience // Biological Psychiatry: Cognitive Neuroscience & Neuroimaging. 2017. V. 2. № 1. P. 28–37. DOI: 10.1016/j.bpsc.2016.09.006
72. Kumar P., Goer F., Murray L. et al. Impaired reward prediction error encoding and striatal-midbrain connectivity in depression // Neuropsychopharmacology. 2018. V. 43. № 7. P. 1581–1588. -x. DOI: 10.1038/s41386-018-0032
73. Kumari V., Peters E., Guinn A. et al. Mapping Depression in Schizophrenia: A Functional Magnetic Resonance Imaging Study // Schizophrenia Bulletin. 2016. V. 42. № 3. P. 802–813. DOI: 10.1093/schbul/sbv186
74. Lamers A., Toepper M., Fernando S.C. et al. Caudate hyperactivation during the processing of happy faces in borderline personality disorder // Neuropsychologia. 2021. V. 163. e108086. DOI: 10.1016/j.neuropsychologia.2021.108086 EDN: CDPLKF
75. Lee H.-S., Lee J.-E., Lee K.-U., Kim Y.-H. Neural changes associated with emotion processing in children experiencing peer rejection: a functional MRI study // J. Korean Medical Science. 2014. V. 29. № 9. P. 1293–1300. DOI: 10.3346/jkms.2014.29.9.1293
76. Lee J.S., Han K., Lee S.-K. et al. Altered structural connectivity and trait anhedonia in patients with schizophrenia // Neuroscience Letters. 2014. V. 579. P. 7–11. DOI: 10.1016/j.neulet.2014.07.001
77. Lee J.S., Kim E.S., Kim E.J. et al. The relationship between self-referential processing-related brain activity and anhedonia in patients with schizophrenia // Psychiatry Research: Neuroimaging. 2016. V. 254. P. 112–118. DOI: 10.1016/j.pscychresns.2016.06.010
78. Lee J.S., Park H.-J., Chun J.W. et al. Neuroanatomical correlates of trait anhedonia in patients with schizophrenia: a voxel-based morphometric study // Neuroscience Letters. 2011. V. 489. № 2. P. 110–114. DOI: 10.1016/j.neulet.2010.11.076
79. Li G., Cao C., Fang R. et al. Neural correlates of posttraumatic anhedonia symptoms: Decreased functional connectivity between ventral pallidum and default mode network regions // J. Psychiatric Research. 2021. V. 140. P. 30–34. DOI: 10.1016/j.jpsychires.2021.05.061 EDN: DMGRXY
80. Li X., Li Z., Li K. et al. The neural transfer effect of working memory training to enhance hedonic processing in individuals with social anhedonia // Scientific Reports. 2016. V. 6. e35481. DOI: 10.1038/srep35481
81. Li Z., Zhang C.-Y., Huang J. et al. Improving motivation through real-time fMRI-based self-regulation of the nucleus accumbens // Neuropsychology. 2018. V. 32. № 6. P. 764–776. DOI: 10.1037/neu0000425
82. Liu R., Wang Y., Chen X. et al. Anhedonia correlates with functional connectivity of the nucleus accumbens subregions in patients with major depressive disorder // Neuroimage: Clinical. 2021. V. 30. e102599. DOI: 10.1016/j.nicl.2021.102599 EDN: FGDMHF
83. Liu X., Li L., Li M. et al. Characterizing the subtype of anhedonia in major depressive disorder: A symptom-specific multimodal MRI study // Psychiatry Research: Neuroimaging. 2021. V. 308. e111239. DOI: 10.1016/j.pscychresns.2020.111239 EDN: LRRDLQ
84. MacNamara A., Klumpp H., Kennedy A.E. et al. Transdiagnostic neural correlates of affective face processing in anxiety and depression // Depression & Anxiety. 2017. V. 34. № 7. P. 621–631. DOI: 10.1002/da.22631
85. Macoveanu J., Meluken I., Chase H.W. et al. Reduced frontostriatal response to expected value and reward prediction error in remitted monozygotic twins with mood disorders and their unaffected high-risk co-twins // Psychological Medicine. 2021. V. 51. № 10. P. 1637–1646. DOI: 10.1017/S0033291720000367 EDN: SDYKQF
86. Malejko K., Neff D., Brown R. et al. Neural Correlates of Social Inclusion in Borderline Personality Disorder // Frontiers in Psychiatry. 2018. V. 9. e653. DOI: 10.3389/fpsyt.2018.00653
87. Matsunaga M., Kawamichi H., Umemura T. et al. Neural and Genetic Correlates of the Social Sharing of Happiness // Frontiers in Neuroscience. 2017. V. 11. e718. DOI: 10.3389/fnins.2017.00718
88. Mellem M.S., Liu Y., Gonzalez H. et al. Machine Learning Models Identify Multimodal Measurements Highly Predictive of Transdiagnostic Symptom Severity for Mood, Anhedonia, and Anxiety // Biological Psychiatry: Cognitive Neuroscience & Neuroimaging. 2020. V. 5. № 1. P. 56–67. DOI: 10.1016/j.bpsc.2019.07.007 EDN: WRMVSL
89. Mies G.W., Van den Berg I., Franken I.H.A. et al. Neurophysiological correlates of anhedonia in feedback processing // Frontiers in Human Neuroscience. 2013. V. 7. e96. DOI: 10.3389/fnhum.2013.00096
90. Mirabito G., Taiwo Z., Bezdek M., Light S.N. Fronto-striatal activity predicts anhedonia and positive empathy subtypes // Brain Imaging & Behavior. 2019. V. 13. № 6. P. 1554–1565. -z. DOI: 10.1007/s11682-019-00081 EDN: GUSFLZ
91. Mitterschiffthaler M.T., Kumari V., Malhi G.S. et al. Neural response to pleasant stimuli in anhedonia: an fMRI study // Neuroreport. 2003. V. 14. № 2. P. 177–182. DOI: 10.1097/00001756-200302100-00003
92. Morgan J.K., Silk J.S., Woods B.K., Forbes E.E. Differential neural responding to affective stimuli in 6- to 8-year old children at high familial risk for depression: Associations with behavioral reward seeking // J. Affective Disorders. 2019. V. 257. P. 445–453. DOI: 10.1016/j.jad.2019.06.058
93. Park I.H., Chun J.W., Park H.-J. et al. Altered cingulo-striatal function underlies reward drive deficits in schizophrenia // Schizophrenia Research. 2015. V. 161. № 2–3. P. 229–236. DOI: 10.1016/j.schres.2014.11.005
94. Pelletier-Baldelli A., Orr J.M., Bernard J.A., Mittal V.A. Social reward processing: A biomarker for predicting psychosis risk? // Schizophrenia Research. 2020. V. 226. P. 129–137. DOI: 10.1016/j.schres.2018.07.042 EDN: JFHRUU
95. Perini I., Gustafsson P.A., Hamilton J.P. et al. Brain-based Classification of Negative Social Bias in Adolescents With Nonsuicidal Self-injury: Findings From Simulated Online Social Interaction // EClinicalMedicine. 2019. V. 13. P. 81–90. DOI: 10.1016/j.eclinm.2019.06.016
96. Pessin S., Philippi C.L., Reyna L. et al. Influence of anhedonic symptom severity on reward circuit connectivity in PTSD // Behavioral Brain Research. 2021. V. 407. e113258. DOI: 10.1016/j.bbr.2021.113258 EDN: YLUQOO
97. Pfarr J.-K., Brosch K., Meller T. et al. Brain structural connectivity, anhedonia, and phenotypes of major depressive disorder: A structural equation model approach // Human Brain Mapping. 2021. V. 42. № 15. P. 5063–5074. DOI: 10.1002/hbm.25600 EDN: IYKTUI
98. Pisoni A., Davis S.W., Smoski M. Neural signatures of saliency-mapping in anhedonia: A narrative review // Psychiatry Research. 2021. V. 304. e114123. DOI: 10.1016/j.psychres.2021.114123 EDN: HVUYFZ
99. Pulcu E., Lythe K., Elliott R. et al. Increased amygdala response to shame in remitted major depressive disorder // PLoS One. 2014. V. 9. № 1. e86900. DOI: 10.1371/journal.pone.0086900
100. Quarmley M.E., Nelson B.D., Clarkson T. et al. I Knew You Weren’t Going to Like Me! Neural Response to Accurately Predicting Rejection Is Associated With Anxiety and Depression // Frontiers in Behavioral Neuroscience. 2019. V. 13. e219. DOI: 10.3389/fnbeh.2019.00219
101. Regenbogen C., Kellermann T., Seubert J. et al. Neural responses to dynamic multimodal stimuli and pathology-specific impairments of social cognition in schizophrenia and depression // British J. Psychiatry. 2015. V. 206. № 3. P. 198–205. DOI: 10.1192/bjp.bp.113.143040
102. Rütgen M., Pfabigan D.M., Tik M. et al. Detached empathic experience of others’ pain in remitted states of depression – An fMRI study // Neuroimage: Clinical. 2021. V. 31. e102699. DOI: 10.1016/j.nicl.2021.102699 EDN: QGYBAX
103. Ryan J., Pouliot J.J., Hajcak G., Nee D.E. Manipulating Reward Sensitivity Using Reward Circuit-Targeted Transcranial Magnetic Stimulation // Biological Psychiatry: Cognitive Neuroscience & Neuroimaging. 2022. S2451-9022(22)00050-7. DOI: 10.1016/j.bpsc.2022.02.011 EDN: DIAXOY
104. Rzepa E., McCabe C. Anhedonia and depression severity dissociated by dmPFC resting-state functional connectivity in adolescents // J. Psychopharmacology. 2018. V. 32. № 10. P. 1067–1074. DOI: 10.1177/0269881118799935
105. Sankar A., Yttredahl A.A., Fourcade E.W. et al. Dissociable Neural Responses to Monetary and Social Gain and Loss in Women With Major Depressive Disorder // Frontiers in Behavioral Neuroscience. 2019. V. 13. e149. DOI: 10.3389/fnbeh.2019.00149
106. Schaefer H.S., Putnam K.M., Benca R.M., Davidson R.J. Event-related functional magnetic resonance imaging measures of neural activity to positive social stimuli in pre- and post-treatment depression // Biological Psychiatry. 2006. V. 60. № 9. P. 974–986. DOI: 10.1016/j.biopsych.2006.03.024
107. Schaub A.-C., Kirschner M., Schweinfurth N. et al. Neural mapping of anhedonia across psychiatric diagnoses: A transdiagnostic neuroimaging analysis // Neuroimage: Clinical. 2021. V. 32. e102825. DOI: 10.1016/j.nicl.2021.102825 EDN: WGMLDW
108. Schilbach L., Müller V.I., Hoffstaedter F. et al. Meta-analytically informed network analysis of resting state FMRI reveals hyperconnectivity in an introspective socio-affective network in depression // PLoS One. 2014. V. 9. № 4. e94973. DOI: 10.1371/journal.pone.0094973
109. Schwartz K.T.G., Kryza–Lacombe M., Liuzzi M.T. et al. Social and Non-social Reward: A Preliminary Examination of Clinical Improvement and Neural Reactivity in Adolescents Treated With Behavioral Therapy for Anxiety and Depression // Frontiers in Behavioral Neuroscience. 2019. V. 13. e177. DOI: 10.3389/fnbeh.2019.00177
110. Schwarz K., Moessnang C., Schweiger J.I. et al. Transdiagnostic Prediction of Affective, Cognitive, and Social Function Through Brain Reward Anticipation in Schizophrenia, Bipolar Disorder, Major Depression, and Autism Spectrum Diagnoses // Schizophrenia Bulletin. 2020. V. 46. № 3. P. 592–602. DOI: 10.1093/schbul/sbz075
111. Seidel E.-M., Satterthwaite T.D., Eickhoff S.B. et al. Neural correlates of depressive realism – an fMRI study on causal attribution in depression // J. Affective Disorders. 2012. V. 138. № 3. P. 268–276. DOI: 10.1016/j.jad.2012.01.041
112. Sharma A., Satterthwaite T.D., Vandekar L. et al. Divergent relationship of depression severity to social reward responses among patients with bipolar versus unipolar depression // Psychiatry Research: Neuroimaging. 2016. V. 254. P. 18–25. DOI: 10.1016/j.pscychresns.2016.06.003
113. Shimada K., Kasaba R., Fujisawa T.X. et al. Subclinical maternal depressive symptoms modulate right inferior frontal response to inferring affective mental states of adults but not of infants // J. Affective Disorders. 2018. V. 229. P. 32–40. DOI: 10.1016/j.jad.2017.12.031
114. Smith E.E., Cavanagh J.F., Allen J.J.B. Intracranial source activity (eLORETA) related to scalp-level asymmetry scores and depression status // Psychophysiology. 2018. V. 55. № 1.. DOI: 10.1111/psyp.13019
115. Stein D.J. Depression, anhedonia, and psychomotor symptoms: the role of dopaminergic neurocircuitry // CNS Spectrum. 2008. V. 13. № 7. P. 561–565. DOI: 10.1017/s1092852900016837 EDN: PHSTCX
116. Stretton J., Walsh N.D., Mobbs D. et al. How biopsychosocial depressive risk shapes behavioral and neural responses to social evaluation in adolescence // Brain & Behavior. 2021. V. 11. № 5. e02005. DOI: 10.1002/brb3.2005 EDN: DKXHWS
117. Suffel A., Nagels A., Steines M. et al. Feeling addressed! The neural processing of social communicative cues in patients with major depression // Human Brain Mapping. 2020. V. 41. № 13. P. 3541–3554. DOI: 10.1002/hbm.25027 EDN: PKIAFQ
118. Surguladze S., Brammer M.J., Keedwell P. et al. A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder // Biological Psychiatry. 2005. V. 57. № 3. P. 201–209. DOI: 10.1016/j.biopsych.2004.10.028
119. Szczepanik J.E., Brycz H., Kleka P. et al. Metacognition and emotion – How accurate perception of own biases relates to positive feelings and hedonic capacity // Conscious & Cognition. 2020. V. 82. e102936. DOI: 10.1016/j.concog.2020.102936 EDN: VXXIQY
120. Takamura M., Okamoto Y., Okada G. et al. Patients with major depressive disorder exhibit reduced reward size coding in the striatum // Progress in Neuropsychopharmacology & Biological Psychiatry. 2017. V. 79. (Pt. B). P. 317-323. DOI: 10.1016/j.pnpbp.2017.07.006
121. Taylor N., Hollis J.P., Corcoran S. et al. Impaired reward responsiveness in schizophrenia // Schizophrenia Research. 2018. V. 199. P. 46–52. DOI: 10.1016/j.schres.2018.02.057
122. Tepfer L.J., Alloy L.B., Smith D.V. Family history of depression is associated with alterations in task-dependent connectivity between the cerebellum and ventromedial prefrontal cortex // Depression & Anxiety. 2021. V. 38. № 5. P. 508–520. DOI: 10.1002/da.23143 EDN: YNZGRY
123. Thai M., Başgöze Z., Klimes–Dougan B. et al. Neural and Behavioral Correlates of Clinical Improvement to Ketamine in Adolescents With Treatment Resistant Depression // Frontiers in Psychiatry. 2020. V. 11. e820. DOI: 10.3389/fpsyt.2020.00820 EDN: DVWMFT
124. Uldall S.W., Madsen K.H., Siebner H.R. et al. Processing of Positive Visual Stimuli Before and After Symptoms Provocation in Posttraumatic Stress Disorder – A Functional Magnetic Resonance Imaging Study of Trauma-Affected Male Refugees // Chronic Stress. 2020. V. 4. e2470547020917623. DOI: 10.1177/2470547020917623 EDN: FXMNIQ
125. Wacker J., Dillon D.G., Pizzagalli D.A. The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques // Neuroimage. 2009. V. 46. № 1. P. 327–337. DOI: 10.1016/j.neuroimage.2009.01.058 EDN: MMTFXN
126. Wade B.S.C., Hellemann G., Espinoza R.T. et al. Accounting for symptom heterogeneity can improve neuroimaging models of antidepressant response after electroconvulsive therapy // Human Brain Mapping. 2021. V. 42. № 16. P. 5322–5333. DOI: 10.1002/hbm.25620 EDN: KBJACA
127. Wade B.S.C., Hellemann G., Espinoza R.T. et al. Depressive Symptom Dimensions in Treatment-Resistant Major Depression and Their Modulation With Electroconvulsive Therapy // J. ECT. 2020. V. 36(2). P. 123–129. DOI: 10.1097/YCT.0000000000000623
128. Walsh E.C., Eisenlohr-Moul T.A., Minkel J. et al. Pretreatment brain connectivity during positive emotion upregulation predicts decreased anhedonia following behavioral activation therapy for depression // J. Affective Disorders. 2019. V. 243. P. 188–192. DOI: 10.1016/j.jad.2018.09.065
129. Wang Y., Deng Y., Fung G. et al. Distinct structural neural patterns of trait physical and social anhedonia: evidence from cortical thickness, subcortical volumes and inter-regional correlations // Psychiatry Research. 2014. V. 224. № 3. P. 184–191. DOI: 10.1016/j.pscychresns.2014.09.005
130. Wang Y., Li Z., Liu W.-H. et al. Negative Schizotypy and Altered Functional Connectivity During Facial Emotion Processing // Schizophrenia Bulletin. 2018. V. 44. (S. 2). P. S491-S500. DOI: 10.1093/schbul/sby036
131. Wang Y., Liu W.-H., Li Z. et al. Altered corticostriatal functional connectivity in individuals with high social anhedonia // Psychological Medicine. 2016. V. 46. № 1. P. 125–135. DOI: 10.1017/S0033291715001592
132. Wang Y., Liu W.-H., Li Z. et al. Dimensional schizotypy and social cognition: an fMRI imaging study // Frontiers in Behavioral Neuroscience. 2015. V. 9. e133. DOI: 10.3389/fnbeh.2015.00133
133. Wang Y., Tang S., Zhang L. et al. Data-driven clustering differentiates subtypes of major depressive disorder with distinct brain connectivity and symptom features // British J. Psychiatry. 2021. V. 219. № 5. P. 606–613. DOI: 10.1192/bjp.2021.103 EDN: SQHVIH
134. Wang Y.-Z., Han Y., Zhao J.-J. et al. Brain activity in patients with deficiency versus excess patterns of major depression: A task fMRI study // Complementary Therapies in Medicine. 2019. V. 42. P. 292–297. DOI: 10.1016/j.ctim.2018.12.006
135. Ward J., Lyall L.M., Bethlehem R.A.I. et al. Novel genome-wide associations for anhedonia, genetic correlation with psychiatric disorders, and polygenic association with brain structure // Translational Psychiatry. 2019. V. 9. № 1. e327. -y. DOI: 10.1038/s41398-019-0635 EDN: KINPLW
136. Waugh C.E., Hamilton J.P., Chen M.C. et al. Neural temporal dynamics of stress in comorbid major depressive disorder and social anxiety disorder // Biology of Mood & Anxiety Disorders. 2012. V. 2. e11. DOI: 10.1186/2045-5380-2-11 EDN: QMAJZE
137. Whitton A.E., Kumar P., Treadway M.T. et al. Mapping Disease Course Across the Mood Disorder Spectrum Through a Research Domain Criteria Framework // Biological Psychiatry: Cognitive Neuroscience & Neuroimaging. 2021. V. 6. № 7. P. 706–715. DOI: 10.1016/j.bpsc.2021.01.004 EDN: XNOZUB
138. Yang X., Huang J., Roser M.E., Xie G. Anhedonia reduction correlates with increased ventral caudate connectivity with superior frontal gyrus in depression // Journal of Psychiatric Research. 2022. V. 151. P. 286–290. DOI: 10.1016/j.jpsychires.2022.04.030 EDN: IFCSMA
139. Yang X.-H., Wang Y., Wang D.F. et al. White matter microstructural abnormalities and their association with anticipatory anhedonia in depression // Psychiatry Research: Neuroimaging. 2017. V. 264. P. 29–34. DOI: 10.1016/j.pscychresns.2017.04.005
140. Yang Z.-Y., Zhang R.-T., Li Y. et al. Functional connectivity of the default mode network is associated with prospection in schizophrenia patients and individuals with social anhedonia // Progress in Neuropsychopharmacology & Biological Psychiatry. 2019. V. 92. P. 412–420. DOI: 10.1016/j.pnpbp.2019.02.008
141. Young K.S., Bookheimer S.Y., Nusslock R. et al. Dysregulation of threat neurociruitry during fear extinction: the role of anhedonia // Neuropsychopharmacology. 2021. V. 46. № 9. P. 1650–1657. DOI: 10.1038/s41386-021-01003-8 EDN: AQADTY
142. Yu M., Cullen N., Linn K.A. et al. Structural brain measures linked to clinical phenotypes in major depression replicate across clinical centres // Molecular Psychiatry. 2021. V. 26. № 7. P. 2764–2775. DOI: 10.1038/s41380-021-01039-8 EDN: CZQORX
143. Zhang B., Lin P., Shi H. et al. Mapping anhedonia-specific dysfunction in a transdiagnostic approach: an ALE meta-analysis // Brain Imaging & Behavior. 2016. V. 10. № 3. P. 920–939. DOI: 10.1007/s11682-015-9457-6 EDN: MSIASB
144. Zhang H., Harris L., Split M. et al. Anhedonia and individual differences in orbitofrontal cortex sulcogyral morphology // Human Brain Mapping. 2016. V. 37. № 11. P. 3873–3881. DOI: 10.1002/hbm.23282
145. Zhang R.-T., Yang Z.-Y., Wang Y.M. et al. Affective forecasting in individuals with social anhedonia: The role of social components in anticipated emotion, prospection and neural activation // Schizophrenia Research. 2020. V. 215. P. 322–329. DOI: 10.1016/j.schres.2019.10.006 EDN: TTMSEO
146. Zhang T., He K., Bai T. et al. Altered neural activity in the reward-related circuit and executive control network associated with amelioration of anhedonia in major depressive disorder by electroconvulsive therapy // Progress in Neuropsychopharmacology & Biological Psychiatry. 2021. V. 109. e110193. DOI: 10.1016/j.pnpbp.2020.110193 EDN: VIPPHO
147. Zhang Y.-J., Cai X.-L., Hu H.-X. et al. Social brain network predicts real-world social network in individuals with social anhedonia // Psychiatry Research: Neuroimaging. 2021. V. 317. e111390. DOI: 10.1016/j.pscychresns.2021.111390 EDN: LJZDMR
148. Zhang Y.-J., Pu C.-C., Wang Y.-M. et al. Social brain network correlates with real-life social network in individuals with schizophrenia and social anhedonia // Schizophrenia Research. 2021. V. 232. P. 77–84. DOI: 10.1016/j.schres.2021.05.016 EDN: MPHZGB
149. Zhu X., Ward J., Cullen B. et al. Phenotypic and genetic associations between anhedonia and brain structure in UK Biobank // Translational Psychiatry. 2021. V. 11. № 1. e395. DOI: 10.1038/s41398-021-01522-4 EDN: KJCNTA
Выпуск
Другие статьи выпуска
Церамиды – биологически активные липиды с широким спектром биологических и патофизиологических эффектов, выполняющие в жировой ткани (ЖТ) роль вторичного мессенджера, регулирующего метаболический гомеостаз всего организма [83]. Известны 3 пути синтеза церамидов: de novo, сфингомиелиназный и рециркуляции/“спасения” [47]. В настоящем обзоре обобщены данные о физиологических и патофизиологических эффектах ферментов биосинтеза церамидов de novo.
В обзоре обобщены современные сведения литературы о механизмах патогенеза тяжелого, индуцируемого стрессом заболевания – посттравматического стрессового расстройства (ПТСР). Охарактеризованы происходящие при ПТСР гормональные, биохимические, генетические и морфофункциональные изменения в периферических органах и в ЦНС. Выяснилось, что у большинства исследователей сформировалось мнение о ведущей роли хронического воспаления при ПТСР. Приведены данные изучения действия противовоспалительных средств, имеющих узкую биохимическую направленность. Обзор завершается представлением гипотезы о том, что патогенез ПТСР следует рассматривать как интегративный воспалительный процесс периферических и центральных систем. Терапевтическим средством в таком случае, вероятнее всего, должно быть полифункциональное лекарственное средство. Судя по результатам экспериментов авторов, вероятнее всего это должны быть препараты фармакологической группы гепаринов.
Хорошо известно, что витамины являются необходимыми микронутриентами для нормального функционирования всех систем организма и должны поступать в достаточном количестве с пищей. Роль витаминов, продуцирумых кишечной микробиотой, для здоровья хозяина практически не определена. В обзоре рассматриваются свойства восьми водорастворимых витаминов группы B, их комплексные эффекты на функционирование нервной системы. Уделяется внимание малоизученному вопросу – синтезу витаминов группы В кишечной микробиотой и ее роли в дефиците витаминов в организме. Предполагается, что взаимосвязанные факторы – “западная диета”, измененный состав (дисбиоз) кишечной микробиоты и дефицит витаминов группы В вовлечены в патогенез рассеянного склероза, тяжелого аутоиммунного демиелинизирующего заболевания, поражающего людей трудоспособного возраста. Приводятся имеющиеся исследования по оценке уровня витаминов группы B у пациентов с рассеянным склерозом и применению высоких доз этих витаминов для лечения прогрессирующих форм рассеянного склероза. Кроме того, высказывается идея о возможности использования пробиотических бактерий-продуцентов витаминов группы B в терапии рассеянного склероза.
В статье рассматриваются особенности функционирования системы микроциркуляции, в частности современные интегративные представления о микроциркуляторно-тканевой системе, которая обеспечивает кровоснабжение и регуляцию доставки кислорода в соответствии с метаболическими потребностями ткани и органа. В этой системе важная роль принадлежит реологическим свойствам крови и микрореологическим свойствам эритроцитов, которые выступают в качестве интравазальных регуляторов микрокровотока и оказывают существенное влияние на функционирование системы гемостаза. В реализации фундаментальной физиологической функции – кислородного снабжения тканей в соответствии с их метаболическими потребностями – эритроциты выступают не только в качестве транспортера газов, но и сенсора гипоксии и регулятора вазодилатационной функции эндотелия. Рассматриваются проблемы дисфункции микрокровотока и особенности реологических свойств крови у пациентов с тяжелым течением COVID-19.
Издательство
- Издательство
- ИЗДАТЕЛЬСТВО НАУКА
- Регион
- Россия, Москва
- Почтовый адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- Юр. адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- ФИО
- Николай Николаевич Федосеенков (Директор)
- E-mail адрес
- info@naukapublishers.ru
- Контактный телефон
- +7 (495) 2767735