Хорошо известно, что витамины являются необходимыми микронутриентами для нормального функционирования всех систем организма и должны поступать в достаточном количестве с пищей. Роль витаминов, продуцирумых кишечной микробиотой, для здоровья хозяина практически не определена. В обзоре рассматриваются свойства восьми водорастворимых витаминов группы B, их комплексные эффекты на функционирование нервной системы. Уделяется внимание малоизученному вопросу – синтезу витаминов группы В кишечной микробиотой и ее роли в дефиците витаминов в организме. Предполагается, что взаимосвязанные факторы – “западная диета”, измененный состав (дисбиоз) кишечной микробиоты и дефицит витаминов группы В вовлечены в патогенез рассеянного склероза, тяжелого аутоиммунного демиелинизирующего заболевания, поражающего людей трудоспособного возраста. Приводятся имеющиеся исследования по оценке уровня витаминов группы B у пациентов с рассеянным склерозом и применению высоких доз этих витаминов для лечения прогрессирующих форм рассеянного склероза. Кроме того, высказывается идея о возможности использования пробиотических бактерий-продуцентов витаминов группы B в терапии рассеянного склероза.
Идентификаторы и классификаторы
- SCI
- Биология
Витамины группы B – B1 (тиамин), B2 (рибофлавин), B3 (ниацин, никотинамид), B5 (пантотеновая кислота), B6 (пиридоксин), B7 (биотин), B9 (фолиевая кислота), B12 (кобаламин) представляют собой химически разнородную группу из восьми водорастворимых веществ, выполняющих в организме разнообразные функции.
Список литературы
1. Абдурасулова И.Н., Клименко В.М. Гетерогенность механизмов повреждения нервных клеток при демиелинизирующих аутоиммунных заболеваниях ЦНС // Росс. Физиол. Журн. им. И.М. Сеченова. 2010. Т. 96. № 1. С. 50. EDN: OJGJUV
2. Абдурасулова И.Н., Клименко В.М. Роль иммунных и глиальных клеток в процессах нейродегенерации // Медицинский академический журн. 2011. Т. 1. № 1. С. 12. DOI: 10.17816/MAJ11112-29 EDN: TKPSIT
3. Абдурасулова И.Н., Тарасова Е.А., Мацулевич А.В. и др. Влияние бифидобактерий в составе кишечной микробиоты на течение рассеянного склероза // Проблемы медицинской микологии. 2022. Т. 24. № 2. С. 38. EDN: EAEXJJ
4. Абдурасулова И.Н. Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 1. Клинические и экспериментальные доказательства вовлечения микробиоты кишечника в развитие рассеянного склероза // Медицинский академический журн. 2022. Т. 22. № 2. С. 9. DOI: 10.17816/MAJ108241 EDN: BZXZDJ
5. Бисага Г.Н., Одинак М.М., Бойко А.Н., Мельник Ю.Б., Попова Н.Ф. Возможности лечения обострений рассеянного склероза без применения кортикостероидов: роль метаболической и антиоксидантной терапии // Журн. Неврологии и Психиатрии им. С.С. Корсакова. 2011. Т. 111. № 2. С. 44. EDN: NZFCGD
6. Громова О.А., Торшин И.Ю., Прокопович О.А. Синергидные нейропротекторные эффекты тиамина, пиридоксина и цианокобаламина в рамках протеома человека // Consilium Medicum. Неврология и Ревматология (Прил.). 2016. Т. 2. С. 76. EDN: YOSOOP
7. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации (утв. Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека) // Методические рекомендации (МР 2.3.1.0253-21) от 22.07.2021 г. EDN: MAYTEB
8. Abdou E., Hazell A.S. Thiamine deficiency: An update of pathophysiologic mechanisms and future therapeutic considerations // Neurochem. Res. 2015. V. 40. № 2. P. 353. -z. DOI: 10.1007/s11064-014-1430 EDN: BYBUGZ
9. Albert M.J., Mathan V.I., Baker S.J. Vitamin B12 synthesis by human small intestinal bacteria // Nature. 1980. V. 283. № 5749. P. 781. DOI: 10.1038/283781a0
10. Anagnostouli M., Livaniou E., Nyalala J.O. et al. Cerebrospinal fluid levels of biotin in various neurological disorders // Acta Neurol. Scand. 1999. V. 99. № 6. P. 387. x. DOI: 10.1111/j.1600-0404.1999.tb07369
11. Anderson B.B., Scattoni M., Perry G.M. et al. Is the flavin-deficient red blood cell common in Maremma, Italy, an important defense against malaria in this area? // Am. J. Hum. Genet. 1994. V. 55. № 5. P. 975.
12. Anzalone S., Vetreno R.P., Ramos R.L., Savage L.M. Cortical cholinergic abnormalities contribute to the amnesic state induced by pyrithiamine-induced thiamine deficiency in the rat // Eur. J. Neurosci. 2010. V. 32. № 5. P. 847. x. DOI: 10.1111/j.1460-9568.2010.07358
13. Aring C.D., Spies T.D. Vitamin B deficiency and nervous disease // J. Neurol. Psychiatry. 1939. V. 2. № 4. P. 335. c. DOI: 10.1001/jama.1960.73020300005019
14. Arumugam M., Raes J., Pelletier E. et al. Enterotypes of the human gut microbiome // Nature. 2011. V. 473. P. 174. DOI: 10.1038/nature09944
15. Ascherio A., Munger K. L., White R. et al. Vitamin D as an early predictor of multiple sclerosis activity and progression // JAMA Neurol. 2014. V. 71. № 3. P. 306. DOI: 10.1001/jamaneurol.2013.5993
16. Ascherio A., Munch M. Epstein–Barr virus and multiple sclerosis // Epidemiology. 2000. V. 11. № 2. P. 220. DOI: 10.1097/00001648-2000030000-00023
17. Ashoori M., Saedisomeolia A. Riboflavin (vitamin B2) and oxidative stress: a review // Br. J. Nutr. 2014. V. 111. № 11. P. 1985. DOI: 10.1017/S0007114514000178
18. Asrar F.M., O’Connor D.L. Bacterially synthesized folate and supplemental folic acid are absorbed across the large intestine of piglets // J. Nutr. Biochem. 2005. V. 16. № 10. P. 587. DOI: 10.1016/j.jnutbio.2005.02.006
19. Aufreiter S., Gregory J.F.3rd, Pfeiffer C.M. et al. Folate is absorbed across the colon of adults: evidence from cecal infusion of (13)C-labeled [6S]-5-formyltetrahydrofolic acid // Am. J. Clin. Nutr. 2009. V. 90. № 1. P. 116. DOI: 10.3945/ajcn.2008.27345
20. Au-Yeung K.K.W., Yip J.C.W., Siow Y.L., Karmin O. Folic acid inhibits homocysteine-induced superoxide anion production and nuclear factor kappa B activation in macrophages // Can. J. Physiol. Pharmacol. 2006. V. 84. № 1. P. 141. DOI: 10.1139/Y05-136 EDN: MERCCH
21. Awuchi C.G., Igwe V.S., Amagwula I.O. Nutritional diseases and nutrient toxicities: a systematic review of the diets and nutrition for prevention and treatment // Int. J. Adv. Acad. Res. 2020. V. 6. № 1. P. 1.
22. Bâ A. Metabolic and structural role of thiamine in nervous tissues // Cell. Mol. Neurobiol. 2008. V. 28. № 7. P. 923. DOI: 10.1007/s10571-008-9297-7 EDN: YALGCB
23. Badawy A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects // Int. J. Tryptophan Res. 2017. V. 10. P. 1178646917691938. DOI: 10.1177/1178646917691938
24. Baggott J.E., Tamura T. Folate-dependent purine nucleotide biosynthesis in humans // Adv. Nutr. 2015. V. 6. № 5. P. 564. DOI: 10.3945/an.115.008300
25. Bagur M.J., Murcia M.A., Jiménez-Monreal A.M. et al. Influence of diet in multiple sclerosis: A systematic review // Adv. Nutr. 2017. V. 8. № 3. P. 463. DOI: 10.3945/an.116.014191
26. Basu T.K., Mann S. Vitamin B-6 normalizes the altered sulfur amino acid status of rats fed diets containing pharmacological levels of niacin without reducing niacin’s hypolipidemic effects // J. Nutr. 1997. V. 127. № 1. P. 117. DOI: 10.1093/jn/127.1.117
27. Bates C. Riboflavin // Int. J. Vitam. Nutr. Res. 1993. V. 63. № 4. P. 274.
28. Besler H.T., Comoğlu S. Lipoprotein oxidation, plasma total antioxidant capacity and homocysteine level in patients with multiple sclerosis // Nutr. Neurosci. 2003. V. 6. № 3. P. 189. DOI: 10.1080/1028415031000115945
29. Biesalski H.K. Nutrition meets the microbiome: micronutrients and the microbiota // Ann. N.Y. Acad. Sci. 2016. V. 1372. № 1. P. 53. DOI: 10.1111/nyas.13145
30. Birnbaum G., Stulc J. High Dose Biotin As Treatment for Progressive Multiple Sclerosis // Mult. Scler. Relat. Disord. 2017. V. 18. P. 141. DOI: 10.1016/j.msard.2017.09.030
31. Bitarafan S., Harirchian M.-H., Nafissi S. et al. Dietary intake of nutrients and its correlation with fatigue in multiple sclerosis patients // Iran. J. Neurol. 2014. V. 13. № 1. P. 28.
32. Bitarafan S., Karimi E., Moghadasi A.N. et al. Impact of supplementation with “multivitamin-mineral” specially formulated to improve fatigue and inflammatory state in patients with multiple sclerosis: A triple-blind, randomized, placebo-controlled trial // Curr. J. Neurol. 2020. V. 19. № 4. P. 180. DOI: 10.18502/cjn.v19i4.5545 EDN: WMMSCK
33. Blad C.C., Tang C., Offermanns S. G protein-coupled receptors for energy metabolites as new therapeutic targets // Nat. Rev. Drug Discov. 2012. V. 11. № 8. P. 603. DOI: 10.1038/nrd3777
34. Blaut M., Clavel T. Metabolic diversity of the intestinal microbiota: Implication for health and disease // J. Nutr. 2007. V. 137. P. 751. S. DOI: 10.1093/jn/137.3.751
35. Blom H.J., Shaw G.M., den Heijer M., Finnell R.H. Neural tube defects and folate: case far from closed // Nat. Rev. Neurosci. 2006. V. 7. № 9. P. 724. DOI: 10.1038/nrn1986
36. Bourquin F., Capitani G., Grütter M.G. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism // Protein Sci. 2011. V. 20. № 9. P. 1492. DOI: 10.1002/pro.679
37. Braniste V., Al-Asmakh M., Kowal C. et al. The gut microbiota influences blood brain barrier permeability in mice // Sci. Transl. Med. 2014. V. 6. № 263. P. 263ra158. DOI: 10.1126/scitranslmed.3009759
38. Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system // Nat. Immunol. 2013. V. 14. № 7. P. 676. DOI: 10.1038/ni.2640
39. Brosnan M.E., MacMillan L., Stevens J.R., Brosnan J.T. Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation? // Biochem. J. 2015. V. 472. № 2. P. 135. DOI: 10.1042/BJ20150837 EDN: WTUAHL
40. Butterworth R.F. Thiamin deficiency and brain disorders // Nutr. Res. Rev. 2003. V. 16. № 2. P. 277. DOI: 10.1079/NRR200367 EDN: XOXZRR
41. Calderón-Ospina C.A., Nava-Mesa M.O. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin // CNS Neurosci. Ther. 2020. V. 26. P. 5. DOI: 10.1111/cns.13207 EDN: MFZWYT
42. Campbell G., Mahad D.J. Mitochondrial dysfunction and axon degeneration in progressive multiple sclerosis // FEBS Lett. 2018. V. 592. P. 113. DOI: 10.1002/1873-3468.13013
43. Carrothers J.M., York M.A., Brooker S.L. et al. Fecal Microbial Community Structure Is Stable over Time and Related to Variation in Macronutrient and Micronutrient Intakes in Lactating Women // J. Nutr. 2015. V. 145. № 10. P. 2379. DOI: 10.3945/jn.115.211110
44. Castagnet S., Blasco H., Vourc’h P., Andres C.R., Praline J. Chronic demyelinating polyneuropathy and B6 hypervitaminosis // Rev. Med. Interne. 2010. V. 31. № 12. e1. DOI: 10.1016/j.revmed.2010.03.457
45. Castro-Quezada I., Román-Viñas B., Serra-Majem L. The mediterranean diet and nutritional adequacy: A review // Nutrients. 2014. V. 6. № 1. P. 231. DOI: 10.3390/nu6010231
46. Celis A.I., Relman D.A. Competitors versus Collaborators: Micronutrient Processing by Pathogenic and Commensal Human-Associated Gut Bacteria // Mol. Cell. 2020. V. 78. № 4. P. 570. DOI: 10.1016/j.molcel.2020.03.032 EDN: NKCHIQ
47. Clemente J.C., Pehrsson E.C., Blaser M.J. et al. The microbiome of uncontacted Amerindians // Sci. Adv. 2015. V. 1. № 3. e1500183. DOI: 10.1126/sciadv.1500183
48. Collongues N., Kuhle J., Tsagkas C. et al. Biomarkers of treatment response in patients with progressive multiple sclerosis treated with high-dose pharmaceutical-grade biotin (MD1003) // Brain Behav. 2021. V. 11. № 2. e01998. DOI: 10.1002/brb3.1998 EDN: XBREGM
49. Cordain L., Eaton S.B., Sebastian A. et al. Origins and evolution of the western diet: Health implications for the 21st century // Am. J. Clin. Nutr. 2005. V. 81. № 2. P. 341. DOI: 10.1093/ajcn.81.2.341
50. Costantini A., Nappo A., Pala M.I., Zappone A. High dose thiamine improves fatigue in multiple sclerosis // BMJ Case Rep. 2013. bcr2013009144. DOI: 10.1136/bcr-2013-009144
51. Costliow Z.A., Degnan P.H. Thiamine Acquisition Strategies Impact Metabolism and Competition in the Gut Microbe Bacteroides thetaiotaomicron // mSystems. 2017. V. 2. № 5. e00116-17. DOI: 10.1128/mSystems.00116-17 EDN: YFBKST
52. Couloume L., Barbin L., Leray E. et al. High-dose biotin in progressive multiple sclerosis: A prospective study of 178 patients in routine clinical practice // Mult. Scler. 2020. V.26. № 14. P. 1898. DOI: 10.1177/1352458519894713
53. Cree B.A.C., Cutter G., Wolinsky J.S. et al. SPI2 investigative teams. Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial // Lancet Neurol. 2020. V. 19. № 12. P. 988. DOI: 10.1016/S1474-4422(20)30347-1 EDN: PUIZIV
54. Das P., Babaei P., Nielsen J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome // BMC Genomics. 2019. V. 20. № 1. P. 208. DOI: 10.1186/s12864-019-5591-7 EDN: RZCGIS
55. Degnan P.H., Barry N.A., Mok K.C., Taga M.E., Goodman A.L. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut // Cell Host Microbe. 2014. V. 15. № 1. P. 47. DOI: 10.1016/j.chom.2013.12.007 EDN: SPRFNL
56. Degnan P.H., Taga M.E., Goodman A.L. Vitamin B12 as a modulator of gut microbial ecology // Cell Metabolism. 2014. V. 20. № 5. P. 769. DOI: 10.1016/j.cmet.2014.10.002 EDN: UPUKKT
57. de la Rubia Ortí J.E., Cuerda-Ballester M., Drehmer E. et al. Vitamin B1 Intake in Multiple Sclerosis Patients and its Impact on Depression Presence: A Pilot Study // Nutrients. 2020. V. 12. № 9. P. 2655. DOI: 10.3390/nu12092655 EDN: PJCPMS
58. Demas A., Cochin J.-P., Hardy C. et al. Tardive reactivation of progressive multiple sclerosis during treatment with biotin // Neurol. Ther. 2020. V. 9. № 1. P. 181. DOI: 10.1007/s40120-019-00175-2
59. den Besten G., van Eunen K., Groen A.K. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism // J. Lipid Res. 2013. V. 54. № 9. P. 2325. DOI: 10.1194/jlr.R036012
60. Depeint F., Bruce W.R., Shangari N., Mehta R., O’Brien P.J. Mitochondrial function and toxicity: Role of the B vitamin family on mitochondrial energy metabolism // Chem. Biol. Interact. 2006. V. 163. № 1–2. P. 94. DOI: 10.1016/j.cbi.2006.04.014
61. Depeint F., Bruce W.R., Shangari N., Mehta R., O’Brien P.J. Mitochondrial function and toxicity: Role of B vitamins on the one-carbon transfer pathways // Chem. Biol. Interact. 2006. V. 163. № 1–2. P. 113. DOI: 10.1016/j.cbi.2006.05.010
62. Dinan T.G., Cryan J.F. The microbiome-gut-brain axis in health and disease // Gastroenterol. Clin. North. Am. 2017. V. 46. № 1. P. 77. DOI: 10.1016/j.gtc.2016.09.007
63. di Salvo M.L., Contestabile R., Safo M.K. Vitamin B6 salvage enzymes: mechanism, structure and regulation // Biochim. Biophys. Acta. 2011. V. 1814. № 11. P. 1597. DOI: 10.1016/j.bbapap.2010.12.006
64. Du X., Yang Y., Zhan X. et al. Vitamin B6 prevents excessive inflammation by reducing accumulation of sphingosine-1-phosphate in a sphingosine-1-phosphate lyase–dependent manner // J. Cell. Mol. Med. 2020. V. 24. № 22. P. 13129. DOI: 10.1111/jcmm.15917 EDN: QYEEOO
65. Eckburg P.B., Bik E.M., Bernstein C.N. et al. Diversity of the human intestinal microbial flora // Science. 2005. V. 308. № 5728. P. 1635. DOI: 10.1126/science.1110591
66. el-Hindi H.M., Amer H.A. Effect of thiamine, magnesium, and sulfate salts on growth, thiamine levels, and serum lipid constituents in rats // J. Nutr. Sci. Vitaminol (Tokyo). 1989. V. 35. № 5. P. 505. DOI: 10.3177/jnsv.35.505
67. Elo P., Li X.-G., Liljenbäck H. et al. Efficacy and tolerability of folate aminopterin therapy in a rat focal model of multiple sclerosis // J. Neuroinflammation. 2021. V. 18. № 1. P. 30. DOI: 10.1186/s12974-021-02073-7 EDN: VZIFBU
68. Engevik M.A., Morra C.N., Röth D. et al. Microbial metabolic capacity for intestinal folate production and modulation of host folate receptors // Front. Microbiol. 2019. V. 10. P. 2305. DOI: 10.3389/fmicb.2019.02305
69. Espiritu A.I., Remalante–Rayco P.P.M. High-dose biotin for multiple sclerosis: A systematic review and meta-analyses of randomized controlled trials // Mult. Scler. Rel. Disord. 2021. V. 55. P. 103159. 10.1016/ j.msard.2021.103159. DOI: 10.1016/j.msard.2021.103159 EDN: HFMFPT
70. Fangmann D., Theismann E.-M., Türk K. et al. Targeted Microbiome Intervention by Microencapsulated Delayed-Release Niacin Beneficially Affects Insulin Sensitivity in Humans // Diabetes Care. 2018. V. 41. № 3. P. 398. DOI: 10.2337/dc17-1967
71. Frame L.A., Costa E., Jackson S.A. Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature // Nutr. Rev. 2020. V. 78. № 10. P. 798. DOI: 10.1093/nutrit/nuz106 EDN: NXZZUR
72. Francini-Pesenti F., Brocadello F., Famengo S., Nardi M., Caregaro L. Wernicke’s encephalopathy during parenteral nutrition // JPEN J. Parenter. Enteral. Nutr. 2007. V. 31. № 1. P. 69. DOI: 10.1177/014860710703100169
73. Frequin S.T., Wevers R.A., Braam M., Barkhof F., Hommes O.R. Decreased vitamin B12 and folate levels in cerebrospinal fluid and serum of multiple sclerosis patients after high-dose intravenous methylprednisolone // J. Neurol. 1993. V. 240. № 5. P. 305. DOI: 10.1007/BF00838168
74. Frye K.A., Piamthai V., Hsiao A., Degnan P.H. Mobilization of vitamin B12 transporters alters competitive dynamics in a human gut microbe // Cell Rep. 2021. V. 37. № 13. P. 110164. DOI: 10.1016/j.celrep.2021.110164 EDN: IIIRRF
75. Gasperi V., Sibilano M., Savini I., Catani M.V. Niacin in the central nervous system: an update of biological aspects and clinical applications // Int. J. Mol. Sci. 2019. V. 20. № 4. P. 974. DOI: 10.3390/ijms20040974 EDN: ATASEJ
76. Gazzaniga F., Stebbins R., Chang S.Z., McPeek M.A., Brenner C. Microbial NAD metabolism: lessons from comparative genomics // Microbiol. Mol. Biol. Rev. 2009. V. 73. P. 529. DOI: 10.1128/MMBR.00042-08 EDN: MZEKNP
77. Ghadirian P., Jain M., Ducic S., Shatenstein B., Morisset R. Nutritional factors in the aetiology of multiple sclerosis: a case-control study in Montreal, Canada // Int. J. Epidemiol. 1998. V. 27. № 5. P. 845. DOI: 10.1093/ije/27.5.845 EDN: IQCCTR
78. Ghasemi N., Razavi S., Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy // Cell J. 2017. V. 19. № 1. P. 1. DOI: 10.22074/cellj.2016.4867
79. Ghosal A., Lambrecht N., Subramanya S.B., Kapadia R., Said H.M. Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption // Am. J. Physiol. Gastrointest. Liver Physiol. 2013. V. 304. № 1. P. 64. DOI: 10.1152/ajpgi.00379.2012
80. Gibiino G., Lopetuso L.R., Scaldaferri F. et al. Exploring Bacteroidetes: Metabolic key points and immunological tricks of our gut commensals // Dig. Liver Dis. 2018. V. 50. 7. P. 635. DOI: 10.1016/j.dld.2018.03.016 EDN: SEXQHV
81. Goodman A.L., McNulty N.P., Zhao Y. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat // Cell Host Microbe. 2009. V. 6. № 3. P. 279. DOI: 10.1016/j.chom.2009.08.003
82. Gordon H.A., Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationship // Bacteriological. Rev. 1971. V. 35. № 4. P. 390. DOI: 10.1128/br.35.4.390-429.1971
83. Green R., Allen L.H., Bjørke-Monsen A.L. et al. Vitamin B12 deficiency // Nat. Rev. Dis. Primers. 2017. V. 3. P. 17040. DOI: 10.1038/nrdp.2017.40 EDN: YYNFTJ
84. Gröber U., Kisters K., Schmidt J. Neuroenhancement with vitamin B12-underestimated neurological significance // Nutrients. 2013. V. 5. № 12. P. 5031. DOI: 10.3390/nu5125031
85. Gu Q., Li P. Biosynthesis of Vitamins by Probiotic Bacteria // Probiotics and Prebiotics in Human Nutrition and Health. 2016. Ch 6. P. 135. DOI: 10.5772/63117
86. Guillevin C., Agius P., Naudin M. et al. 1H-31P magnetic resonance spectroscopy: effect of biotin in multiple sclerosis // Ann. Clin. Transl. Neurol. 2019. V. 6. № 7. P. 1332. DOI: 10.1002/acn3.50825
87. Guimarães D.H., Weber A., Klaiber I., Vogler B., Renz P. Guanylcobamide and hypoxanthylcobamide-Corrinoids formed by Desulfovibriovulgaris // Arch. Microbiol. 1994. V. 162. P. 272. DOI: 10.1007/BF00301850 EDN: YEFHLY
88. Haan M.N., Miller J.W., Aiello A.E. et al. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento area Latino study on aging // Am. J. Clin. Nutr. 2007. V. 85. № 2. P. 511. DOI: 10.1093/ajcn/85.2.511
89. Hadadi N., Berweiler V., Wang H., Trajkovski M. Intestinal microbiota as a route for micronutrient bioavailability // Curr. Opin. Endocr. Metab. Res. 2021. V. 20. P. 100 285. DOI: 10.1016/j.coemr.2021.100285 EDN: SRSUNO
90. Hakim M., Kurniani N., Pinzon R.T. et al. Management of peripheral neuropathy symptoms with a fixed dose combination of high-dose vitamin B1, B6 and B12: a 12-week prospective non-interventional study in Indonesia // Asian J. Med. Sci. 2018. V. 9. № 1. P. 32. DOI: 10.3126/ajms.v9i1.18510
91. Hankes L.V., Coenen H.H., Rota E. et al. Effect of Huntington’s and Alzheimer’s diseases on the transport of nicotinic acid or nicotinamide across the human blood brain barrier // Adv. Exp. Med. Biol. 1991. V. 294. P. 675. DOI: 10.1007/978-1-4684-5952-4_91
92. Hansen N.W., Sams A. The Microbiotic Highway to Health–New Perspective on Food Structure, Gut Microbiota, and Host Inflammation // Nutrients. 2018. V. 10. № 11. P. 1590. DOI: 10.3390/nu10111590 EDN: DGJZFY
93. Harbige L.S. Nutrition and immunity with emphasis on infection and autoimmune disease // Nutr. Health. 1996. V. 10. № 4. P. 285. DOI: 10.1177/026010609601000401
94. Hashimoto T., Perlot T., Rehman A. et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation // Nature. 2012. V. 487. P. 477. DOI: 10.1038/nature11228 EDN: RKTSUF
95. Hayashi A., Mikami Y., Miyamoto K. et al. Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillusmurinus in Mice // Cell Rep. 2017. V. 20. № 7. P. 1513. DOI: 10.1016/j.celrep.2017.07.057
96. Hazell A.S., Butterworth R.F. Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation // Alcohol Alcohol. 2009. V. 44. № 2. P. 141. DOI: 10.1093/alcalc/agn120
97. Hedström A.K., Alfredsson L., Olsson T. Environmental factors and their interactions with risk genotypes in MS susceptibility // Curr. Opin. Neurol. 2016. V. 29. № 3. P. 293. DOI: 10.1097/WCO.0000000000000329
98. Hegyi J., Schwartz R.A., Hegyi V. Pellagra: dermatitis, dementia, and diarrhea // Int. J. Dermatol. 2004. V. 43. № 1. P. 1. x. DOI: 10.1111/j.1365-4632.2004.01959 EDN: EUJERN
99. Heinken A., Khan M.T., Paglia G. et al. Functional metabolic map of Faecalibacteriumprausnitzii, a beneficial human gut microbe // J. Bacteriol. 2014. V. 196. № 18. P. 3289. DOI: 10.1128/JB.01780-14 EDN: UEUULT
100. Hoban A.E., Stilling R.M., Ryan F.J. et al. Regulation of prefrontal cortex myelination by the microbiota // Transl. Psychiatry. 2016. V. 6. № 4. e774. DOI: 10.1038/tp.2016.42
101. Huang S.-C., Wei J.C.-C., Wu D.J., Huang Y.-C. Vitamin B(6) supplementation improves pro-inflammatory responses in patients with rheumatoid arthritis // Eur. J. Clin. Nutr. 2010. V. 64. № 9. P. 1007. 10.1038 / ejcn.2010.107. DOI: 10.1038/ejcn.2010.107
102. Huang S., Ma J., Zhu M., Ran Z.V. Status of serum vitamin B12 and folate in patients with inflammatory bowel disease in China // Intest. Res. 2017. V. 15. № 1. P. 103. DOI: 10.5217/ir.2017.15.1.103
103. Huskisson E., Maggini S., Ruf M. The role of vitamins and minerals in energy metabolism and well-being // J. Int. Med. Res. 2007. V. 35. № 35. P. 277. DOI: 10.1177/147323000703500301
104. Hwang C., Ross V., Mahadevan U. Micronutrient deficiencies in inflammatory bowel disease: from a to zinc // Inflamm. Bowel Dis. 2012. V. 18. № 10. P. 1961. DOI: 10.1002/ibd.22906 EDN: RIGFIP
105. International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2; Sawcer S., Hellenthal G., Pirinen M. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis // Nature. 2011. V. 476. № 7359. P. 214. DOI: 10.1038/nature10251
106. Isager H. Serum folate in patients with multiple sclerosis // Acta Neurol. Scand. 1970. V. 46. № 2. P. 238. x. DOI: 10.1111/j.1600-0404.1970.tb05619
107. Jankowska–Kulawy A., Bielarczyk H., Pawełczyk T., Wróblewska M., Szutowicz A. Acetyl-CoA deficit in brain mitochondria in experimental thiamine deficiency encephalopathy // Neurochem. Int. 2010. V. 57. № 7. P. 851. DOI: 10.1016/j.neuint.2010.09.003
108. Ji Z., Fan Z., Zhang Y. et al. Thiamine deficiency promotes T cell infiltration in experimental autoimmune encephalomyelitis: the involvement of CCL2 // J. Immunol. 2014. V. 193. № 5. P. 2157. DOI: 10.4049/jimmunol.1302702
109. Johnson E.L., Heaver S.L., Walters W.A. Ley R.E. Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes // J. Mol. Med. (Berl). 2017. V. 95. № 1. P. 1. DOI: 10.1007/s00109-016-1492-2 EDN: YWUCUB
110. Johnson S. The possible role of gradual accumulation of copper, cadmium, lead and iron and gradual depletion of zinc, magnesium, selenium, vitamins B2, B6, D, and E and essential fatty acids in multiple sclerosis // Med. Hypotheses. 2000. V. 55. № 3. P. 239. DOI: 10.1054/mehy.2000.1051
111. Johnson W.D., Storts R.W. Peripheral neuropathy associated with dietary riboflavin deficiency in the chicken, I: light microscopic study // Vet. Pathol. 1988. V. 25. № 1. P. 9. DOI: 10.1177/030098588802500102
112. Kalekar L.A., Schmiel S.E., Nandiwada S.L. et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors // Nat. Immunol. 2016. V. 17. № 3. P. 304. 10.1038 / ni.3331. DOI: 10.1038/ni.3331
113. Kamanna V.S., Kashyap M.L. Mechanism of action of niacin // Am. J. Cardiol. 2008. V. 101. P. 20B. DOI: 10.1016/j.amjcard.2008.02.029
114. Kanehisa M., Goto S. // KEGG: kyoto encyclopedia of genes and genomes // Nucleic. Acids. Res. 2000. V. 28. № 1. P. 27. https://doi.org. DOI: 10.1093/nar/28.1.27 EDN: IUQVVD
115. Kaneko S., Wang J., Kaneko M. et al. Protecting axonal degeneration by increasing nicotinamide adenine dinucleotide levels in experimental autoimmune encephalomyelitis models // J. Neurosci. 2006. V. 26. № 38. P. 9794. DOI: 10.1523/JNEUROSCI.2116-06.2006
116. Kanevskaia S.A., Kravets A.S., Slesarenko E.V., Shevchenko V.I., Tkachenko N.V. Folic acid in the combined treatment of patients with disseminated sclerosis and chronic gastritis // Vrach. Delo. 1990. V. 4. P. 96. (In Russ). EDN: XJDCHP
117. Karpe F., Frayn K.N. The nicotinic acid receptor–a new mechanism for an old drug // Lancet. 2004. V. 363. P. 1892. DOI: 10.1016/S0140-6736(04)16359-9
118. Kennedy D.O. B Vitamins and the Brain: Mechanisms, Dose and Efficacy–A Review // Nutrients. 2016. V. 8. № 2. P. 68. DOI: 10.3390/nu8020068
119. Khan M.T., Duncan S.H., Stams A.J.M. et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases // ISME J. 2012. V. 6. № 8. P. 1578. DOI: 10.1038/ismej.2012.5
120. Kimura S., Ohtuki N., Nezu A., Tanaka M., Takeshita S. Clinical and radiologic improvements in mitochondrial encephalomyelopathy following sodium dichloroacetate therapy // Brain Dev. 1997. V. 19. № 8. P. 535. DOI: 10.1016/s0387-7604(97)00074-0
121. Kira J., Tobimatsu S., Goto I. Vitamin B12 metabolism and massive-dose methyl vitamin B12 therapy in Japanese patients with multiple sclerosis // Intern. Med. 1994. V. 33. № 2. P. 82. DOI: 10.2169/internalmedicine.33.82
122. Kjer-Nielsen L., Patel O., Corbett A.J. et al. MR1 presents microbial vitamin B metabolites to MAIT cells // Nature. 2012. V. 491. № 7426. P. 717. DOI: 10.1038/nature11605
123. Klenner F.B. Response of Peripheral and Central Nerve Pathology to Mega-Doses of the Vitamin B-Complex and Other Metabolites // J. Appl. Nutr. 1973. https://www.tldp.com/issue/11_00/klenner.htm.
124. Kocer B., Engur S., Ak F., Yılmaz M. Serum vitamin B12, folate, and homocysteine levels and their association with clinical and electrophysiological parameters in multiple sclerosis // J. Clin. Neurosci. 2009. V. 16. № 3. P. 399. DOI: 10.1016/j.jocn.2008.05.015 EDN: MLLRNP
125. Koike H., Watanabe H., Inukai A. et al. Myopathy in thiamine deficiency: Analysis of a case // J. Neurol. Sci. 2006. V. 249. № 2. P. 175. DOI: 10.1016/j.jns.2006.06.016
126. Kok D.E., Steegenga W.T., McKay J.A. Folate and epigenetics: why we should not forget bacterial biosynthesis // Epigenomics. 2018. V. 10. № 9. P. 1147. DOI: 10.2217/epi-2018-0117
127. Komatsu F., Kagawa Y., Kawabata T. et al. Influence of essential trace minerals and micronutrient insufficiencies on harmful metal overload in a Mongolian patient with multiple sclerosis // Curr. Aging Sci. 2012. V. 5. № 2. P. 112. DOI: 10.2174/1874609811205020112
128. Kräutler B., Fieber W., Ostermann S. et al. The cofactor of tetrachloroethene reductive dehalogenase of Dehalospirillummultivorans is norpseudo-B12, a new type of a natural corrinoid // Helv. Chim. Acta. 2003. V. 86. № 11. P. 3698. DOI: 10.1002/hlca.200390313
129. Kruman I.I., Culmsee C., Chan S.L. et al. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity // J. Neurosci. 2000. V. 20. № 18. P. 6920. DOI: 10.1523/JNEUROSCI.20-18-06920.2000
130. Kumar J.S., Subramanian V.S., Kapadia R., Kashyap M.L., Said H.M. Mammalian colonocytes possess a carrier-mediated mechanism for uptake of vitamin B3 (niacin): studies utilizing human and mouse colonic preparations // Am. J. Physiol. Gastrointest. Liver Physiol. 2013. V. 305. № 3. P G207. DOI: 10.1152/ajpgi.00148.2013
131. Kurnasov O., Goral V., Colabroy K. et al. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria // Chem. Biol. 2003. V. 10. № 12. P. 1195. DOI: 10.1016/j.chembiol.2003.11.011
132. Lakhan R., Said H.M. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway // Am. J. Physiol. Cell Physiol. 2017. V. 312. № 4. P. C376. DOI: 10.1152/ajpcell.00300.2016
133. Lakoff A., Fazili Z., Aufreiter S. et al. Folate is absorbed across the human colon: evidence by using enteric-coated caplets containing 13C-labeled [6S]-5-formyltetrahydrofolate // Am. J. Clin. Nutr. 2014. V. 100. № 5. P. 1278. DOI: 10.3945/ajcn.114.091785
134. Lassmann H., Brück W., Lucchinetti C. The immunopathology of multiple sclerosis: an overview // Brain Pathol. 2007. V. 17. № 2. P. 210. x. DOI: 10.1111/j.1750-3639.2007.00064
135. Lassmann H. Multiple sclerosis: Lessons from molecular neuropathology // Exp. Neurol. 2014. V. 262. P. 2. DOI: 10.1016/j.expneurol.2013.12.003 EDN: VUEDYQ
136. LeBlanc J.G., Milani C., de Giori G.S. et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective // Curr. Opin. Biotechnol. 2013. V. 24. № 2. P.160. DOI: 10.1016/j.copbio.2012.08.005 EDN: ROKKXZ
137. Ley R.E., Peterson D.A., Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine // Cell. 2006. V. 124. № 4. P. 837. DOI: 10.1016/j.cell.2006.02.017
138. Likosky W.H., Fireman B., Elmore R. et al. Intense immunosuppression in chronic progressive multiple sclerosis: the Kaiser study // J. Neurol. Neurosurg. Psychiatry. 1991. V. 54. № 12. P. 1055. DOI: 10.1136/jnnp.54.12.1055
139. Luo A., Leach S.T., Barres R. et al. The microbiota and epigenetic regulation of T Helper 17/regulatory T cells: in search of a balanced immune system // Front. Immunol. 2017. V. 8. P. 417. DOI: 10.3389/fimmu.2017.00417
140. Magnúsdóttir S., Ravcheev D., de Crécy-Lagard V., Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes // Front. Genet. 2015. V. 6. P. 148. DOI: 10.3389/fgene.2015.00148 EDN: UOUOKB
141. Maillart E., Mochel F., Acquaviva C., Maisonobe T., Stankoff B. Severe transient myopathy in a progressive multiple sclerosis patient with high-dose biotin // Neurol. 2019. V. 92. № 22. P. 1060. DOI: 10.1212/WNL.0000000000007576
142. Mallone F., Lucchino L., Franzone F. et al. High-dose vitamin B supplementation for persistent visual deficit in multiple sclerosis: a pilot study // Drug Discov. Ther. 2020. V. 14. № 3. P. 122. DOI: 10.5582/ddt.2020.03031 EDN: TNYTZR
143. Mandić M., Mitić K., Nedeljković P. et al. Vitamin B Complex and Experimental Autoimmune Encephalomyelitis-Attenuation of the Clinical Signs and Gut Microbiota Dysbiosis // Nutrients. 2022. V. 14. № 6. P. 1273. DOI: 10.3390/nu14061273 EDN: OWZQZQ
144. Mastronardi F.G., Min W., Wang H. et al. Attenuation of experimental autoimmune encephalomyelitis and nonimmune demyelination by IFN-beta plus vitamin B12: treatment to modify notch-1/sonic hedgehog balance // J. Immunol. 2004. V. 172. № 10. P. 6418. DOI: 10.4049/jimmunol.172.10.6418
145. Mastronardi F.G., Tsui H., Winer S. et al. Synergy between paclitaxel plus an exogenous methyl donor in the suppression of murine demyelinating diseases // Mult. Scler. 2007. V. 13. № 5. P. 596. DOI: 10.1177/1352458506072167
146. Mathais S., Moisset X., Pereira B. et al. Relapses in Patients Treated with High-Dose Biotin for Progressive Multiple Sclerosis // Neurotherapeutics. 2021. V. 18. № 1. P. 378. DOI: 10.1007/s13311-020-00926-2 EDN: VVCYNZ
147. Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L. An immunoregulatory molecule of symbiotic bacteria directs maturation of the host immune system // Cell. 2005. V. 122. № 1. P. 107. DOI: 10.1016/j.cell.2005.05.007
148. McKay K.A., Jahanfar S., Duggan T., Tkachuk S., Tremlett H. Factors associated with onset, relapses or progression in multiple sclerosis: a systematic review // Neurotoxicology. 2017. V. 61. P. 189. DOI: 10.1016/j.neuro.2016.03.020
149. Meikle A.W., Wittek P.J., Klain G.J. An aberration of glucose metabolism and steroidogenesis in adrenals of thiamin-deficient rats // Endocrinology. 1972. V. 91. № 5. P. 1206. DOI: 10.1210/endo-91-5-1206
150. Men Y., Seth E.C., Yi S. et al. Identification of specific corrinoids reveals corrinoid modification in dechlorinating microbial communities // Environ. Microbiol. 2015. V. 17. № 12. P. 4873. DOI: 10.1111/1462-2920.12500 EDN: WTLAMF
151. Merra G., Noce A., Marrone G. et al. Influence of Mediterranean Diet on Human Gut Microbiota // Nutrients. 2021. V. 13. № 1. P. 7. DOI: 10.3390/nu13010007 EDN: HXZERH
152. Meydani S.N., Ribaya-Mercado J.D., Russell R.M. et al. Vitamin B-6 deficiency impairs interleukin 2 production and lymphocyte proliferation in elderly adults // Am. J. Clin. Nutr. 1991. V. 53. № 5. P. 1275. DOI: 10.1093/ajcn/53.5.1275
153. Mielcarz D.W., Kasper L.H. The Gut Microbiome in Multiple Sclerosis // Curr. Treat. Options Neurol. 2015. V. 17. № 4. P. 344. DOI: 10.1007/s11940-015-0344-7 EDN: TUYZFE
154. Miki T., Goto R., Fujimoto M. et al. The Bactericidal Lectin RegIIIβ Prolongs Gut Colonization and Enteropathy in the Streptomycin Mouse Model for Salmonella Diarrhea // Cell Host Microbe. 2017. V. 21. P. 195. DOI: 10.1016/j.chom.2016.12.008
155. Mikkelsen K., Stojanovska L., Tangalakis K., Bosevski M., Apostolopoulos V. Cognitive decline: a vitamin B perspective // Maturitas. 2016. V. 93. P. 108. DOI: 10.1016/j.maturitas.2016.08.001
156. Mikkelsen K., Stojanovska L., Prakash M., Apostolopoulos V. The effects of vitamin B on the immune/cytokine network and their involvement in depression // Maturitas. 2017. V. 96. P. 58. DOI: 10.1016/j.maturitas.2016.11.012
157. Miller A., Korem M., Almog R., Galboiz Y. Vitamin B12, demyelination, remyelination and repair in multiple sclerosis // J. Neurol. Sci. 2005. V. 233. № 1–2. P. 93. DOI: 10.1016/j.jns.2005.03.009
158. Miller K.L., Trifan G., Testai F.D. Neurology of Nutritional Deficiencies // Curr. Neurol. Neurosci. Rep. 2019. V. 19. № 12. P. 101. DOI: 10.1007/s11910-019-1011-2 EDN: GDEHMT
159. Miller J.W., Ribaya-Mercado J.D., Russell R.M. et al. Effect of vitamin B-6 deficiency on fasting plasma homocysteine concentrations // Am. J. Clin. Nutr. 1992. V. 55. № 6. P. 1154. DOI: 10.1093/ajcn/55.6.1154
160. Miyake S., Kim S., Suda W. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV clusters // PLoS One. 2015. V. 10. № 9. e0137429. DOI: 10.1371/journal.pone.0137429
161. Moghaddasi M., Mamarabadi M., Mohebi N., Razjouyan H., Aghaei M. Homocysteine, vitamin B12 and folate levels in Iranian patients with Multiple Sclerosis: a case control study // Clin. Neurol. Neurosurg. 2013. V. 115. № 9. P. 1802. DOI: 10.1016/j.clineuro.2013.05.007 EDN: SQOXRB
162. Moore M.T. Treatment of multiple sclerosis with nicotinic acid and vitamin B1 // Arch. Intern. Med. (Chic). 1940. V. 65. № 1. P. 1. DOI: 10.1001/archinte.1940.00190070011001
163. Morales M.S., Mueller D. Anergy into T regulatory cells: an integration of metabolic cues and epigenetic changes at the Foxp3 conserved non-coding sequence 2 // F1000Res. 2018. V. 7. P. 1938. DOI: 10.12688/f1000research.16551.1
164. Morra M., Philipszoon H.D., D’Andrea G. et al. Sensory and motor neuropathy caused by excessive ingestion of vitamin B6: a case report // Funct. Neurol. 1993. V. 8. № 6. P. 429.
165. Naghashpour M., Amani R., Sarkaki A. et al. Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis // Iran J. Basic Med. Sci. 2016. V. 19. № 4. P. 439.
166. Naghashpour M., Majdinasab N., Shakerinejad G. et al. Riboflavin supplementation to patients with multiple sclerosis does not improve disability status nor is riboflavin supplementation correlated to homocysteine // Int. J. Vitam. Nutr. Res. 2013. V. 83. № 5. P. 281. DOI: 10.1024/0300-9831/a000170 EDN: UTXYXF
167. Najafi M.R., Shaygannajad V., Mirpourian M., Gholamrezaei A. Vitamin B(12) Deficiency and Multiple Sclerosis; Is there Any Association? // Int. J. Prev. Med. 2012. V. 3. № 4. P. 286.
168. Nardone R., Höller Y., Storti M. et al. Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: A reappraisal // Sci. World J. 2013. V. 2013. P. 309143. DOI: 10.1155/2013/309143 EDN: VJGOFV
169. Nemazannikova N., Mikkleson K., Stojanovska L., Blatch G.L, Apostolopoulos V. Is there a link between vitamin B and multiple sclerosis? // Med. Chem. 2018. V. 14. № 2. P. 170. DOI: 10.2174/1573406413666170906123857 EDN: YHKYEH
170. Nijst T.Q., Wevers R.A., Schoonderwaldt H.C., Hommes O.R., de Haan A.F. Vitamin B12 and folate concentrations in serum and cerebrospinal fluid of neurological patients with special reference to multiple sclerosis and dementia // J. Neurol. Neurosurg. Psychiatry. 1990. V. 53. № 11. P. 951. DOI: 10.1136/jnnp.53.11.951
171. Nilsson K., Gustafson L., Hultberg B. Elevated plasma homocysteine level in vascular dementia reflects the vascular disease process // Dement. Geriatr. Cogn. Dis. Extra. 2013. V. 3. № 1. P. 16. DOI: 10.1159/000345981
172. Obeid R., McCaddon A., Herrmann W. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases // Clin. Chem. Lab. Med. 2007. V. 45. № 12. P. 1590. DOI: 10.1515/CCLM.2007.356 EDN: MLLRLR
173. Offermanns S., Schwaninger M. Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation // Trends Mol. Med. 2015. V. 21. № 4. P. 245. DOI: 10.1016/j.molmed.2015.02.002
174. Offermanns S. Hydroxy-Carboxylic Acid Receptor Actions in Metabolism // Trends Endocrinol. Metab. 2017. V. 28. № 3. P. 227. DOI: 10.1016/j.tem.2016.11.007
175. Okada K., Tanaka H., Temporin K. et al. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model // Exp. Neurol. 2010. V. 222. № 2. P. 191. DOI: 10.1016/j.expneurol.2009.12.017
176. Parra M., Stahl S., Hellmann H. Vitamin B6 and Its Role in Cell Metabolism // Cells. 2018. V. 7. № 7. P. 84. DOI: 10.3390/cells7070084 EDN: NLZRIE
177. Penberthy W.T., Tsunoda I. The Importance of NAD in Multiple Sclerosis // Curr. Pharm. Des. 2009. V. 15. № 1. P. 64. DOI: 10.2174/138161209787185751
178. Pratt J.M., Thorp R.G. The Chemistry of Vitamin B12. Part. V. The Class (b) Character of the Cobaltic Ion Inorganic Chemistry of Vitamin B12 // J. Chem. Soc. A. 1966. P. 187. DOI: 10.1039/J19660000187
179. Putnam E.E., Goodman A.L. B vitamin acquisition by gut commensal bacteria // PLoS Pathog. 2020. V. 16. № 1. P. e1008208. 10.1371/ journal.ppat.1008208. DOI: 10.1371/journal.ppat.1008208 EDN: QJKFTI
180. Qi B., Kniazeva M., Han M. A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal’s food behavior and growth // Elife. 2017. V. 6. e26243. DOI: 10.7554/eLife.26243
181. Qin J., Li R., Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing // Nature. 2010. V. 464. № 7285. P. 59. DOI: 10.1038/nature08821
182. Raichle M.E. Two views of brain function // Trends Cogn. Sci. 2010. V. 14. № 4. P. 180. DOI: 10.1016/j.tics.2010.01.008
183. Rall L.C., Meydani S.N. Vitamin B6 and immune competence // Nutr. Rev. 1993. V. 51. № 8. P. 217. x. DOI: 10.1111/j.1753-4887.1993.tb03109
184. Rawji K.S., Young A.M.H., Ghosh T. et al. Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system // Acta Neuropathol. 2020. V. 139. № 5. P. 893. DOI: 10.1007/s00401-020-02129-7 EDN: GMGPZA
185. Reynolds E.H., Linnell J.C., Faludy J.E. Multiple sclerosis associated with vitamin B12 deficiency // Arch. Neurol. 1991. V. 48. № 8. P. 808. DOI: 10.1001/archneur.1991.00530200044017
186. Reynolds E. Vitamin B12, folic acid, and the nervous system // Lancet Neurol. 2006. V. 5. № 11. P. 949. DOI: 10.1016/S1474-4422(06)70598-1
187. Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review // Complement Ther. Med. 2011. V. 19. № 4. P. 228. DOI: 10.1016/j.ctim.2011.06.006
188. Rojo D., Méndez-García C., Raczkowska B.A. et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function // FEMS Microbiol. Rev. 2017. V. 41. № 4. P. 453–478. DOI: 10.1093/femsre/fuw046 EDN: YFUGQV
189. Rong N., Selhub J., Goldin B.R., Rosenberg I.H. Bacterially synthesized folate in rat large intestine is incorporated into host tissue folyl polyglutamates // J. Nutr. 1991. V. 121. № 12. P. 1955. DOI: 10.1093/jn/121.12
190. Rossi M., Amaretti A., Raimondi S. Folate production by probiotic bacteria // Nutrients. 2011. V. 3. № 1. P. 118. DOI: 10.3390/nu3010118 EDN: PHDRNT
191. Russo C., Morabito F., Luise F. et al. Hyperhomocysteinemia is associated with cognitive impairment in multiple sclerosis // J. Neurol. 2008. V. 255. № 1. P. 64. DOI: 10.1007/s00415-007-0668-7 EDN: MLLRMB
192. Said H.M., Kumar C. Intestinal absorption of vitamins // Curr. Opin. Gastroenterol. 1999. V. 15. № 2. P. 172. DOI: 10.1097/00001574-199903000-00015
193. Said H.M., Mohammed Z.M. Intestinal absorption of water-soluble vitamins: an update // Curr. Opin. Gastroenterol. 2006. V. 22. № 2. P. 140. DOI: 10.1097/01.mog.0000203870.22706.52
194. Said H.M., Nexo E. Gastrointestinal Handling of Water-Soluble Vitamins // Compr. Physiol. 2018. V. 8. № 4. P. 1291. DOI: 10.1002/cphy.c170054
195. Salemi G., Gueli M.C., Vitale F. et al. Blood lipids, homocysteine, stress factors, and vitamins in clinically stable multiple sclerosis patients // Lipids Health Dis. 2010. V. 9. № 19. P. 19. DOI: 10.1186/1476-511X-9-19 EDN: NZBOWT
196. Sampson T.R., Mazmanian S.K. Control of Brain Development, Function, and Behavior by the Microbiome // Cell Host Microbe. 2015. V. 17. № 5. P. 565. DOI: 10.1016/j.chom.2015.04.011
197. Sanada Y., Kumoto T., Suehiro H. et al. RASSF6 expression in adipocytes is down-regulated by interaction with macrophages // PLoS One. 2013. V. 8. № 4. e61931. DOI: 10.1371/journal.pone.0061931
198. Sandyk R., Awerbuch G.I. Vitamin B12 and its relationship to age of onset of multiple sclerosis // Int. J. Neurosci. 1993. V. 71. № 1–4. P. 93. DOI: 10.3109/00207459309000596
199. Scalabrino G., Buccellato F.R., Veber D., Mutti E. New basis of the neurotrophic action of vitamin B12 // Clin. Chem. Lab. Med. 2003. V. 41. № 11. P. 1435. DOI: 10.1515/CCLM.2003.220
200. Scalabrino G., Veber D., De Giuseppe R., Roncaroli F. Low levels of cobalamin, epidermal growth factor, and normal prions in multiple sclerosis spinal cord // Neuroscience. 2015. V. 298. P. 293. DOI: 10.1016/j.neuroscience.2015.04.020
201. Schlenz M.A., Schlenz M.B., Wöstmann B. et al. Riboflavin Is an Important Determinant of Vitamin B-6 Status in Healthy Adults // J. Nutr. 2020. V. 150. № 10. P. 2699. DOI: 10.1093/jn/nxaa225 EDN: SLRRSJ
202. Schroecksnadel K., Frick B., Wirleitner B. et al. Moderate hyperhomocysteinemia and immune activation // Curr. Pharm. Biotechnol. 2004. V. 5. № 1. P. 107. DOI: 10.2174/1389201043489657
203. Schwarz M.J., Guillemin G.J., Teipel S.J., Buerger K., Hampel H. Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls // Eur. Arch. Psychiatry Clin. Neurosci. 2013. V. 263. № 4. P. 345. -x. DOI: 10.1007/s00406-012-0384 EDN: UQWORD
204. Sedaghat F., Jessri M., Behrooz M., Mirghotbi M., Rashidkhani B. Mediterranean diet adherence and risk of multiple sclerosis: a case-control study // Asia Pac. J. Clin. Nutr. 2016. V. 25. № 2. P. 377. DOI: 10.6133/apjcn.2016.25.2.12
205. Sedel F., Papeix C., Bellanger A. et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study // Mult. Scler. Relat. Disord. 2015. V. 4. № 2. P. 159. DOI: 10.1016/j.msard.2015.01.005
206. Segal I., Tim L.O., Demetriou A. et al. Rectal manifestations of pellagra // Int. J. Colorectal Dis. 1986. V. 1. № 4. P. 238. DOI: 10.1007/BF01648345
207. Selhub J., Byun A., Liu Z. et al. Dietary vitamin B6 intake modulates colonic inflammation in the IL10–/– model of inflammatory bowel disease // J. Nutr. Biochem. 2013. V. 24. №12. P. 2138. DOI: 10.1016/j.jnutbio.2013.08.005
208. Serbus L.R., Rodriguez B.G., Sharmin Z., Momtaz A.J.M.Z., Christensen S. Predictive Genomic Analyses Inform the Basis for Vitamin Metabolism and Provisioning in Bacteria-Arthropod Endosymbioses // G3 (Bethesda). 2017. V. 7. № 6. P.1887. DOI: 10.1534/g3.117.042184 EDN: YHLRME
209. Serra-Majem L., Bes-Rastrollo M., Román-Viñas B. et al. Dietary patterns and nutritional adequacy in a mediterranean country // Br. J. Nutr. 2009. V. 101 (Suppl. 2). P. S21. DOI: 10.1017/S0007114509990559
210. Shen Y., Xu J., Li Z. et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study // Schizophr. Res. 2018. V. 197. P. 470. DOI: 10.1016/j.schres.2018.01.002
211. Shibata K., Onodera M. Comparison of Tryptophan-Niacin Conversion in Rats Fed with a Nicotinic Acid-Free Diet Containing Egg White, Egg White Proteolysate, or Mixtures of Amino Acid // Agric. Biol. Chem. 1991. V. 55. № 5. P. 1291. DOI: 10.1080/00021369.1991.10870775
212. Shibata K., Nakata C., Fukuwatari T. Moderate Food Restriction Suppresses the Conversion of L-tryptophan to Nicotinamide in Weaning Rats // Biosci. Biotechnol. Biochem. 2014. V. 78. P. 478. DOI: 10.1080/09168451.2014.890025
213. Shibata K., Kobayashi R., Fukuwatari T. Vitamin B1 Deficiency Inhibits the Increased Conversion of Tryptophan to Nicotinamide in Severe Food-Restricted Rats // Biosci. Biotechnol. Biochem. 2015. V. 79. № 1. P. 103. DOI: 10.1080/09168451.2014.962473
214. Shibata K. Organ Co-Relationship in Tryptophan Metabolism and Factors That Govern the Biosynthesis of Nicotinamide from Tryptophan // J. Nutr. Sci. Vitaminol. 2018. V. 64. № 2. P. 90. DOI: 10.3177/jnsv.64.90
215. Siddiqui U., Egnor E., Sloane J.A. Biotin supplementation in MS clinically valuable but can alter multiple blood test results // Mult. Scler. 2017. V. 23. № 4. P. 619. DOI: 10.1177/1352458516680751
216. Singh N., Gurav A., Sivaprakasam S. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis // Immunity. 2014. V. 40. № 1. P. 128. DOI: 10.1016/j.immuni.2013.12.007
217. Sly L.M., Lopez M., Nauseef W.M., Reiner N.E. 1alpha,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase // J. Biol. Chem. 2001. V. 276. № 38. P. 35482. DOI: 10.1074/jbc.M102876200
218. Solomon L.R. Cobalamin-responsive disorders in the ambulatory care setting: unreliability of cobalamin, methylmalonic acid, and homocysteine testing // Blood. 2005. V. 105. № 3. P. 978. DOI: 10.1182/blood-2004-04-1641
219. Sospedra M., Martin R. Immunology of multiple sclerosis // Annu. Rev. Immunol. 2005. V. 23. P. 683. DOI: 10.1146/annurev.immunol.23.021704.115707
220. Spector R. Niacin and niacinamide transport in the central nervous system. In vivo studies // J. Neurochem. 1979. V. 33. № 4. P. 895. x. DOI: 10.1111/j.1471-4159.1979.tb09919
221. Spector R. Vitamin transport diseases of brain: Focus on folates, thiamine and riboflavin // Brain Disord. Ther. 2014. V. 3. № 2. P. 1.
222. Sriram K., Manzanares W., Joseph K. Thiamine in nutrition therapy // Nutr. Clin. Pract. 2012. V. 27. № 1. P. 41. DOI: 10.1177/0884533611426149 EDN: YDRHFX
223. Stankiewicz J., Panter S.S., Neema M. et al. Iron in Chronic Brain Disorders: Imaging and Neurotherapeutic Implications // Neurotherapeutics. 2007. V. 4. № 3. P. 371. DOI: 10.1016/j.nurt.2007.05.006 EDN: OZVDVP
224. Stein E.D., Diamond J.M. Do dietary levels of pantothenic acid regulate its intestinal uptake in mice? // J. Nutr. 1989. V. 119. № 12. P. 1973. DOI: 10.1093/jn/119.12.1973
225. Steinert R.E., Sadabad M.S., Harmsen H.J.M., Weber P. The prebiotic concept and human health: a changing landscape with riboflavin as a novel prebiotic candidate? // Eur. J. Clin. Nutr. 2016. V. 70. № 12. P. 1348. DOI: 10.1038/ejcn.2016.119 EDN: YVYOJR
226. Steinert R.E., Lee Y.-K., Sybesma W. Vitamins for the Gut Microbiome // Trends Mol. Med. 2019. V. 26. № 2. P. 137. DOI: 10.1016/j.molmed.2019.11.005 EDN: XLMLQK
227. Stephenson E., Nathoo N., Mahjoub Y., Dunn J., Yong V.W. Iron in multiple sclerosis: roles in neurodegeneration and repair // Nat. Rev. Neurol. 2014. V. 10. № 8. P. 459. 10.1038 / nrneurol.2014.118. DOI: 10.1038/nrneurol.2014.118
228. Street H.R., Cowgill G.R., Zimmerman H.M. Some Observations of Vitamin B6 Deficiency in the Dog: Three Figures // J. Nutrition. 1941. V. 21. № 3. P. 275. DOI: 10.1093/jn/21.3.275
229. Subramanian V.S., Subramanya S.B., Ghosal A., Said H.M. Chronic alcohol feeding inhibits physiological and molecular parameters of intestinal and renal riboflavin transport // Am. J. Physiol. Cell Physiol. 2013. V. 305. № 5. P. C539. DOI: 10.1152/ajpcell.00089.2013
230. Subramanian V.S., Lambrecht N., Lytle C., Said H.M. Conditional (intestinal-specific) knockout of the riboflavin transporter-3 (RFVT-3) impairs riboflavin absorption // Am. J. Physiol. Gastrointest. Liver Physiol. 2016. V. 310. № 4. P. G285. DOI: 10.1152/ajpgi.00340.2015
231. Swanson K.V., Deng M., Ting J.P.-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics // Nat. Rev. Immunol. 2019. V. 19. № 8. P. 477. DOI: 10.1038/s41577-019-0165-0
232. Teunissen C.E., Killestein J., Kragt J.J. et al. Serum homocysteine levels in relation to clinical progression in multiple sclerosis // J. Neurol. Neurosurg. Psychiatry. 2008. V. 79. № 12. P. 1349. DOI: 10.1136/jnnp.2008.151555 EDN: MLLRNF
233. Thakur K., Tomar S.K., De S. Lactic acid bacteria as a cell factory for riboflavin production // Microb. Biotechnol. 2016. V. 9. № 4. P. 441. DOI: 10.1111/1751-7915.12335 EDN: WOUUUD
234. Thakur K., Tomar S.K., Singh A.K., Mandal S., Arora S. Riboflavin and health: A review of recent human research // Crit. Rev. Food Sci. Nutr. 2017. V. 57. № 17. P. 3650. DOI: 10.1080/10408398.2016.1145104 EDN: YFNVOP
235. Tourbah A., Lebrun-Frenay C., Edan G. el al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: a randomised, double-blind, placebo-controlled study // Mult. Scler. 2016. V. 22. № 13. P. 1719. DOI: 10.1177/1352458516667568
236. Uchida Y., Ito K., Ohtsuki S. et al. Major involvement of Na+-dependent multivitamin transporter (SLC5A6/SMVT) in uptake of biotin and pantothenic acid by human brain capillary endothelial cells // J. Neurochem. 2015. V. 134. № 1. P. 97. DOI: 10.1111/jnc.13092
237. Uebanso T., Yoshimoto A., Aizawa S. et al. Glycolate is a Novel Marker of Vitamin B 2 Deficiency Involved in Gut Microbe Metabolism in Mice // Nutrients. 2020. V. 12. № 3. P. 736. DOI: 10.3390/nu12030736 EDN: ALRCBO
238. Ueland P.M., Ulvik A., Rios-Avila L., Midttun Ø., Gregory J.F. Direct and functional biomarkers of vitamin B6 status // Annu. Rev. Nutr. 2015. V. 35. P. 33. DOI: 10.1146/annurev-nutr-071714-034330
239. Vagianos K., Bector S., McConnell J., Bernstein C.N. Nutrition assessment of patients with inflammatory bowel disease // JPEN J. Parenter. Enteral. Nutr. 2007. V. 31. № 4. P. 311. DOI: 10.1177/0148607107031004311
240. van Horssen J., Schreibelt G., Drexhage J. et al. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression // Free Radic. Biol. Med. 2008. V. 45. № 12. P. 1729. DOI: 10.1016/j.freeradbiomed.2008.09.023
241. van Rensburg S.J., Kotze M.J., Hon D. et al. Iron and the folate-vitamin B12-methylation pathway in multiple sclerosis // Metab. Brain Dis. 2006. V. 21. № 2–3. P. 121. DOI: 10.1007/s11011-006-9019-0 EDN: EHDGLQ
242. Vernau K., Napoli E., Wong S. et al. Thiamine Deficiency-Mediated Brain Mitochondrial Pathology in A laskan H uskies with Mutation in SLC19A3. 1 // Brain Pathol. 2015. V. 25. № 4. P. 441. DOI: 10.1111/bpa.12188 EDN: USPJQL
243. Virk B., Jia J., Maynard C.A. et al. Folate Acts in E. coli to Accelerate C. elegans Aging Independently of Bacterial Biosynthesis // Cell Rep. 2016. V. 14. № 7. P. 1611. DOI: 10.1016/j.celrep.2016.01.051
244. Vrethem M., Mattsson E., Hebelka H. et al. Increased plasma homocysteine levels without signs of vitamin B12 deficiency in patients with multiple sclerosis assessed by blood and cerebrospinal fluid homocysteine and methylmalonic acid // Mult. Scler. 2003. V. 9. № 3. P. 239. oa. DOI: 10.1191/1352458503ms918
245. Vrolijk M.F., Opperhuizen A., Jansen E.H.J.M. et al. The vitamin B6 paradox: Supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function // Toxicol. in Vitro. 2017. V. 44. P. 206. DOI: 10.1016/j.tiv.2017.07.009
246. Wade D.T., Young C.A., Chaudhuri K.R., Davidson D.L.W. A randomised placebo controlled exploratory study of vitamin B-12, lofepramine, and L-phenylalanine (the “Cari Loder regime”) in the treatment of multiple sclerosis // J. Neurol. Neurosurg. Psychiatry. 2002. V. 73. № 3. P. 246. DOI: 10.1136/jnnp.73.3.246
247. Wang X., Wang J., Rao B., Deng L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individual // Exp. Ther. Med. 2022. V. 23. № 4. P. 250. DOI: 10.3892/etm.2022.11175 EDN: UTRQFJ
248. Weinstein S.J., Hartman T.J., Stolzenberg-Solomon R. et al. Null association between prostate cancer and serum folate, vitamin B(6), vitamin B(12), and homocysteine // Cancer Epidemiol. Biomarkers Prev. 2003. V. 12. P. 1271. https://pubmed.ncbi.nlm.nih.gov/14652294/.
249. WHO/FAO. Vitamin and Mineral Requirements in Human Nutrition. 2nd ed. Report of a joint WHO/FAO Expert Consultation, Bangkok, Thailand 1998. Geneva: World Health Organization/Rome: Food and Agriculture Organization of the United Nations (2004). https://www.fao.org/3/y2809e/y2809e.pdf.
250. Wostmann B.S. The germfree animal in nutritional studies // Ann. Rev. Nutr. 1981. V. 1. P. 257. DOI: 10.1146/annurev.nu.01.070181.001353
251. Yao Y., Yonezawa A., Yoshimatsu H. et al. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain // J. Nutr. 2010. V. 140. № 7. P. 1220. DOI: 10.3945/jn.110.122911 EDN: MZDEGJ
252. Yoshii K., Hosomi K., Sawane K., Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity // Front. Nutr. 2019. V. 6. P. 48. DOI: 10.3389/fnut.2019.00048 EDN: AVREEM
253. Zempleni J., Galloway J.R., McCormick D.B. The metabolism of riboflavin in female patients with liver cirrhosis // Am. J. Clin. Nutr. 1996. V. 63. № 3. P. 54.
254. Zhang J., Chen J., Li Y. et al. Niaspan treatment improves neurological functional recovery in experimental autoimmune encephalomyelitis mice // Neurobiol. Dis. 2008. V. 32. № 2. P. 273. DOI: 10.1016/j.nbd.2008.07.01
255. Zhang Y., Rodionov D.A., Gelfand M.S., Gladyshev V.N. Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization // BMC Genomics. 2009. V. 10. P. 78. DOI: 10.1186/1471-2164-10-78 EDN: LLRYID
256. Zhong W., Li Q., Zhang W. et al. Modulation of Intestinal Barrier and Bacterial Endotoxin Production Contributes to the Beneficial Effect of Nicotinic Acid on Alcohol-Induced Endotoxemia and Hepatic Inflammation in Rats // Biomolecules. 2015. V. 5. № 4. P. 2643. DOI: 10.3390/biom5042643
257. Zhu Y., He Z.-Y., Liu H.-N. Meta-analysis of the relationship between homocysteine, vitamin B12, folate, and multiple sclerosis // J. Clin. Neurosci. 2011. V. 18. № 7. P. 933. 10.1016 / j.jocn.2010.12.022. DOI: 10.1016/j.jocn.2010.12.022 EDN: OMHQVJ
258. Zoetendal E.G., Raes J., van den Bogert B. et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates // ISME J. 2012. V. 6. № 7. P. 1415. DOI: 10.1038/ismej.2011.212
Выпуск
Другие статьи выпуска
В статье рассматриваются особенности функционирования системы микроциркуляции, в частности современные интегративные представления о микроциркуляторно-тканевой системе, которая обеспечивает кровоснабжение и регуляцию доставки кислорода в соответствии с метаболическими потребностями ткани и органа. В этой системе важная роль принадлежит реологическим свойствам крови и микрореологическим свойствам эритроцитов, которые выступают в качестве интравазальных регуляторов микрокровотока и оказывают существенное влияние на функционирование системы гемостаза. В реализации фундаментальной физиологической функции – кислородного снабжения тканей в соответствии с их метаболическими потребностями – эритроциты выступают не только в качестве транспортера газов, но и сенсора гипоксии и регулятора вазодилатационной функции эндотелия. Рассматриваются проблемы дисфункции микрокровотока и особенности реологических свойств крови у пациентов с тяжелым течением COVID-19.
Издательство
- Издательство
- ИЗДАТЕЛЬСТВО НАУКА
- Регион
- Россия, Москва
- Почтовый адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- Юр. адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- ФИО
- Николай Николаевич Федосеенков (Директор)
- E-mail адрес
- info@naukapublishers.ru
- Контактный телефон
- +7 (495) 2767735