1. Williams M.L. On the stress distribution at the base of a stationary crack // Journal of Applied Mechanics. 1957. Vol. 24, issue 1. P. 109-114. DOI: 10.1115/1.4011454
2. Hello G., Tahar M.B., Roelandt J.-M. Analytical determination of coefficients in cracktip stress expansions for a finite crack in an infinite plane medium // International Journal of Solids and Structures. 2012. Vol. 49, issues 3-4. P. 556-566. DOI: 10.1016/j.ijsolstr.2011.10.024 EDN: PHTOQX
3. Hello G. Derivation of complete crack-tip stress expansions from Westergaard-Sanford solutions // International Journal of Solids and Structures. 2018. Vol. 144-145. P. 265-275. DOI: 10.1016/j.ijsolstr.2018.05.012 EDN: YISTWP
4. Zhu F., Ji X., He P., Zheng B., Zhang K. On the stress singularity at crack tip in elasticity // Results in Physics. 2019. Vol. 13. P. 102210. DOI: 10.1016/j.rinp.2019.102210
5. Krepl O., Klusak J. Multi-parameter average strain energy density factor criterion applied on the sharp material inclusion problem // Procedia Structural Integrity. 2018. Vol. 13. P. 1279-1284. DOI: 10.1016/j.prostr.2018.12.261
6. Moazzami M., Ayatollahi M.R., Chamani H.R., Guagliano Vergani L. Determination of higher order stress terms in cracked Brazilian disc specimen under mode I loading using digital image correlation technique // Optic and Laser Technology. 2018. Vol. 107. P. 344-352. DOI: 10.1016/j.optlastec.2018.06.010
7. Karihaloo B.L., Xiao Q.Z. Asymptotic crack tip fields in linear and nonlinear materials and their role in crack propagation // Физическая мезомеханика. 2018. Т. 21, № 6. С. 23-35. DOI: 10.1134/S1029959919010053 EDN: YTYHPN
8. Berto F., Lazzarin P. Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches // Materials Science and Engineering: R: Reports. 2014. Vol. 75. P. 1-48. DOI: 10.1016/j.mser.2013.11.001 EDN: SQZGCR
9. Malikova L. Multi-parameter fracture criteria for the estimation of crack propagation direction applied to a mixed-mode geometry // Engineering Fracture Mechanics. 2015. Vol. 143. P. 32-46. DOI: 10.1016/j.engfracmech.2015.06.029 EDN: QBEMLF
10. Malikova L., Vesely V., Seitl S. Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria // International Journal of Fatigue. 2016. Vol. 89. P. 99-107. DOI: 10.1016/j.ijfatigue.2016.01.010
11. Stepanova L.V. Asymptotics of stresses and strain rates near the tip of a transverse shear crack in a material whose behavior is described by a fractional-linear law // Journal of Applied Mechanics and Technical Physics. 2009. Vol. 50, № 1. P. 137-146. DOI: 10.1007/s10808-009-0019-9 EDN: LLXBOJ
12. Stepanova L.V., Roslyakov P.S. Multi-parameter description of the crack-tip stress field: Analytic determination of coefficients of crack-tip stress expansions in the vicinity of the crack tips of two finite cracks in an infinite plane medium // International Journal of Solids and Structures. 2016. Vol. 100-101. P. 11-28. DOI: 10.1016/j.ijsolstr.2016.06.032 EDN: XFOAPR
13. Vesely V., Sobek J., Seitl S. Multi-parameter approximation of the stress field in a cracked body in the more distant surrounding of the crack tip // International Journal of Fatigue. 2016. Vol. 89. P. 20-35. DOI: 10.1016/j.ijfatigue.2016.02.016 EDN: XQKSYD
14. Stepanova L.V., Adylina E.M. Stress-strain state in the vicinity of a crack tip under mixed loading // Journal of Applied Mechanics and Technical Physics. 2014. Vol. 55, № 5. P. 885-895. DOI: 10.1134/S0021894414050186 EDN: UFJCSP
15. Stepanova L.V., Yakovleva E.M. Asymptotic stress field in the vicinity of a mixedmode crack under plane stress conditions for a power-law hardening material // Journal of Mechanics of Materials and Structures. 2015. Vol. 10, № 3. P. 367-393. DOI: 10.2140/jomms.2015.10.367 EDN: VAJTXH
16. Stepanova L.V., Mushankova K.A. Atomistic and continuum Ascertainment of The crack tip stress fields in anisotropic elastic cubic media // Theoretical and Applied Fracture Mechanics. 2024. Vol. 133. P. 104613. DOI: 10.1016/j.tafmec.2024.104613 EDN: BOCINW
17. Мушанкова К.А., Степанова Л.В. Определение коэффициентов асимптотического ряда для полей напряжений на основании молекулярно-динамических вычислений // Прикладная механика и техническая физика. 2024. DOI: 10.15372/PMTF202415537 EDN: JUUNNU
18. Анисимов Г.С., Степанова Л.В. Экспериментальное определение полей у вершины трещины: метод голографической интерферометрии и метод корреляции цифровых изображений // Вестник Пермского национального исследовательского политехнического университета. Механика. 2024. № 3. С. 39-56. DOI: 10.15593/perm.mech/2024.3.03 EDN: TNFWSC
19. Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. Москва: Наука, 1966. 708 c. URL: https://klex.ru/1fa4?ysclid=m5qsu4dvcj256999603.