В работе рассматриваются задачи, которые можно условно определить, как топологические задачи на прямой. При подготовке учащихся и студентов к участию в математических олимпиадах задачам такого характера следует уделить определённое внимание.
В работе рассматривается два приема доказательства неравенств основанные на соображении выпуклости функций.
Решение геометрических задач на линейное движение объектов объединяет в себе несколько основных соображений-идей, на которых базируется общий принцип решения задач. Последовательное увеличение количества условий и требований к рассматриваемым объектам позволяет демонстрировать востребованность ранее полученных результатов и изученных методов исследования [1-4].
В работе проводится обсуждение своевременного иллюстрирования теоретического курса приложениями к решению задач, являющихся математическими моделями реальных процессов. Приведён пример такого приложения, базирующийся на понятиях, как достаточно простых, изучаемых на младших курсах бакалавриата, так и весьма сложных, касающихся завершающих тем курса математического анализа.
В работе проводится обсуждение полного решения одной задачи преобразования плоскости, относящейся как к математическому анализу, так и к аналитической геометрии. Приведено подробное решение задачи, базирующегося на достаточно простых топологических понятиях, при этом демонстрирующее досконально чёткое исследование вопроса.
При ограничениях определенного вида в исходной экстремальной задаче методы внутренних и внешних штрафных функций логично комбинировать. Это комбинирование обуславливается достаточно конкретным видом ограничений, но, как оказывается, сохраняет теоретическую сходимость при тех же условиях, что и для “чистых” методов.
В работе применительно к задачам нелинейного программирования исследуется класс функций штрафа, обладающих хорошими дифференциальными свойствами и в то же время приемлемым порядком стремления в бесконечность вне допустимой области. Для решения задач выпуклого программирования с означенным ниже классом штрафных функций имеют место достаточно строгие теоретические обоснования. Для ряда модельных задач осуществлено численное исследование.
В работе представлен ряд задач про отображения плоскости в себя, предназначенных для дополнительного факультативного практикума по анализу и геометрии для студентов младших курсов. Занятия на практикуме направлены на развитие аналитических способностей по применению функциональных и топологических понятий в решении задач олимпиадного и исследовательского характера.
В работе представлен набор задач творческого характера для факультативного практикума со студентами младших курсов, решение которых направлено на развитие аналитических качеств и способствующих самостоятельному продвижению как в подготовке к студенческим математическим соревнованиям, так и в исследовательской работе.
В работе применительно к задачам нелинейного программирования исследуется класс функций штрафа, обладающих хорошими дифференциальными свойствами и в то же время приемлемым порядком стремления в бесконечность вне допустимой области. Для решения задач выпуклого программирования с означенным ниже классом штрафных функций имеют место достаточно строгие теоретические обоснования. Для ряда модельных задач осуществлено численное исследование.