ПРИКЛАДНАЯ МАТЕМАТИКА И ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА
Архив статей журнала
Цель исследования - построить модель машинного обучения для декомпозиции текстовой формулировки компетенции. В данной статье рассматриваются методы представления компетенции как множества ключевых слов и терминов. Основное содержание исследования составляет анализ применения двух моделей: BERTopic и ARTM. Описываются основные этапы исследования: сбор и предобработка данных, обучение моделей, анализ и интерпретация результата. В заключении раскрываются преимущества и недостатки применения таких моделей, а также последующие направления исследования.
В статье описан алгоритм Кавош (Kavosh) для поиска сетевых мотивов (или статистически важных подграфов). Приведены зависимости скорости работы, полученные в результате апробации данного алгоритма на языке программирования Python. Разработанный прототип веб-приложения Motif App применим как для анализа ориентированных, так и неориентированных графов.
В статье рассмотрены результаты работы по реализации приложения для автоматизированной генерации титульных листов отчетной документации. Для создания шаблона титульного листа используется система компьютерной вёрстки LaTeX. На основе реализованного шаблона скрипт, разработанный на высокоуровневом языке программирования Python, выполняет подстановку индивидуальных данных студента в шаблон титульного листа, а также выполняет генерацию PDF файла. Подобная генерация титульных листов позволяет упростить работу преподавателей и помочь студентам избежать ошибок при заполнении титульного листа.
В работе рассматриваются общие методы пространственной регистрации изображений. Для улучшения качества добавляются границы на изображение. С помощью алгоритма масштабно-инвариантного преобразования объектов выделяются ключевые точки на изображениях. Путем гомографических преобразований получается совмещенное изображение. Приведены примеры работы алгоритма на медицинских данных. Производится сравнение базового алгоритма и алгоритма с добавлением границ на изображение.