ПРИКЛАДНАЯ МАТЕМАТИКА И ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА
Архив статей журнала
Цель исследования - построить модель машинного обучения для декомпозиции текстовой формулировки компетенции. В данной статье рассматриваются методы представления компетенции как множества ключевых слов и терминов. Основное содержание исследования составляет анализ применения двух моделей: BERTopic и ARTM. Описываются основные этапы исследования: сбор и предобработка данных, обучение моделей, анализ и интерпретация результата. В заключении раскрываются преимущества и недостатки применения таких моделей, а также последующие направления исследования.