Архив статей журнала

МЕТОДИКА ОЦЕНКИ ЭФФЕКТИВНОСТИ ДЕЯТЕЛЬНОСТИ ОРГАНИЗАЦИЙ ИННОВАЦИОННОЙ ИНФРАСТРУКТУРЫ (2024)
Выпуск: № 2 (2024)
Авторы: Кузора Станислав Сергеевич, Олейник Елена Борисовна

Работа посвящена использованию методов математического моделирования для разработки методического подхода к оценке эффективности организаций, деятельность которых связана с инновационным развитием. Раскрывается особенность инновационного развития и определяется роль организаций, участвующих в научно-технической политике государства. В результате анализа отображаются основные виды организаций инновационной инфраструктуры, их функциональное назначение и поддержка со стороны органов исполнительной власти. Теоретической частью исследования является формирование сводного перечня показателей эффективности деятельности организаций инновационной инфраструктуры с целью дальнейшего использования в практической составляющей работы. На основании ранее проведенного исследования обосновывается выбор математического инструментария для разработки методики оценки, который предусматривает использование теории нечетких множеств и нечеткой логики, метода анализа иерархии, анализа временных рядов. Перечисленный набор методов моделирования применяется с точки зрения комплексности объекта исследования: учитываются количественные и качественные показатели, расставляются приоритеты задействованным переменным, принимаются во внимание проанализированные внешние факторы влияния. Такой подход позволяет повысить объективность результатов оценки. В качестве примера предлагаемый методический подход используется для оценки одного из элементов инновационной инфраструктуры. Подчеркивается необходимость комплексной оценки и уточняется практическая применимость предлагаемого подхода. Методика может быть использована органами государственной власти для целесообразного распределения финансовых ресурсов и других мер стимулирования организаций инновационной инфраструктуры. Также методика применима для внутреннего аудита деятельности рассмотренных в работе элементов с целью выработки рекомендаций по повышению собственной эффективности.

Сохранить в закладках
ПРИМЕНЕНИЕ НЕЙРОСЕТЕЙ ГЛУБОКОГО ОБУЧЕНИЯ ДЛЯ ДЕТЕКТИРОВАНИЯ ПРОСТРАНСТВЕННЫХ КЛЮЧЕВЫХ ТОЧЕК ПРИ ВЫПОЛНЕНИИ СПОРТИВНЫХ УПРАЖНЕНИЙ (2024)
Выпуск: № 2 (2024)
Авторы: Терехин Александр Дмитриевич, Федосеев Сергей Анатольевич, Столбов Валерий Юрьевич

Рассматривается применение нейронных сетей для детектирования пространственных ключевых точек человека при выполнении спортивных упражнений. Технология детекции ключевых точек позволяет отслеживать движения спортсменов в реальном времени, проводить глубокий анализ их техники и автоматизировать выполнение упражнений. Это помогает тренерам выявлять слабые места и совершенствовать навыки спортсменов. Основное внимание уделено методам 2D- и 3D-детекции ключевых точек, их применению в спорте и анализу эффективности. Приводятся результаты 3D-детекции ключевых точек для спортсмена выполняющего упражнение.

Сохранить в закладках
ИССЛЕДОВАНИЕ И ОЦЕНКА НЕРАЗЛОЖИМОГО ОСТАТКА НА СТЕПЕНЬ ВЛИЯНИЯ КАЖДОЙ ПЕРЕМЕННОЙ ПРИ ФАКТОРНОМ АНАЛИЗЕ (2024)
Выпуск: № 2 (2024)
Авторы: Баркалов Сергей Алексеевич, Курочка Павел Николаевич, СЕРЕБРЯКОВА ЕЛЕНА АНАТОЛЬЕВНА

Основная задача факторного анализа - это выявление неявных факторов, объясняющих связи между наблюдаемыми переменными. Это дает возможность получить более полное и точное представление об изучаемых явлениях и процессах, что позволяет установить скрытые закономерности и тенденции, которые далеко не всегда возможно определить при визуальном анализе данных. Эти скрытые переменные могут быть использованы для упрощения данных и понимания основных механизмов, лежащих в основе изучаемого явления. Количественная оценка влияния каждой переменной на результат с помощью математических методов может быть выполнена с использованием различных подходов и инструментов. Приводится краткий обзор основного инструментария. Выбор конкретного метода зависит от характера данных, целей исследования и доступных ресурсов. Известно, что основным недостатком факторного анализа является невыполнение переместительного (коммуникативного) закона умножения, что объясняется возникновением неразложимого остатка. Неразложимый остаток объясняется тем, что рассматриваемая модель не полностью учитывает все факторы, влияющие на изучаемое явление, а поэтому вариация признака не будет определяться только рассматриваемыми факторами, то есть останется какая-то часть, не распределенная между факторами. В связи с этим величина влияния факторов на изменение результативного показателя меняется в зависимости от места, на которое поставлен тот или иной фактор в детерминированной модели. С увеличением числа факторов-сомножителей резко возрастает количество равноправных вариантов расчетов, так как увеличивается число возможных перестановок факторов. Таким образом, вариантов расчета степени влияния факторов на результирующий показатель достаточно много и выбор способа расчета зависит от целей исследования. При этом следует отметить, что количество вариантов, рассматриваемых возможных перестановок факторов можно уменьшить за счет агрегирования некоторых факторов. Важно только четко обосновать экономический смысл такого агрегированного показателя. Это обстоятельство дает возможность построения процедуры, позволяющей оценить неразложимый остаток. В статье рассматривается методика оценки неразложимого остатка. Величина неразложимого остатка может быть определена как разность данных, полученных в двух формах расчета, между значениями показателя в мультипликативной модели, где этот показатель стоит на последнем месте, и по другому способу расчета, где этот же фактор поставлен на первое место. Показано, что в ходе проведения факторного анализа имеется инвариантная константа, не зависящая от способа расчета. Приводится также способы уменьшения размерности исходной задача за счет агрегирования исходных факторов. Важно только четко обосновать экономический смысл такого агрегированного показателя. В статье приводится пример трехфакторной модели производительности труда, когда результативный показатель будет определяться тремя факторами: фондоотдачей, механовооруженностью рабочих и долей рабочих в общей численности предприятия. За счет объединения первых двух факторов в один произошла редукция задачи к двухфакторной модели производительности труда, зависящей от двух факторов: средней выработки рабочих и доли рабочих в общей численности работников предприятия.

Сохранить в закладках
НЕЙРО-ОКРЕСТНОСТНЫЕ МОДЕЛИ КАК НОВЫЙ КЛАСС ИЕРАРХИЧЕСКИХ ДИНАМИЧЕСКИХ ОКРЕСТНОСТНЫХ МОДЕЛЕЙ (2024)
Выпуск: № 2 (2024)
Авторы: СЕДЫХ ИРИНА АЛЕКСАНДРОВНА, Истомин Владимир Александрович

Представлены основные особенности моделирования сложных распределенных процессов, отражена актуальность исследования и важность моделирования таких процессов. Рассматривается развитие окрестностного подхода, труды отечественных и зарубежных авторов, внесших значительный вклад в развитие математического моделирования сложных динамических систем. Приведены виды окрестностных моделей и отражено положение нового направления иерархических динамических нейро-окрестностных моделей в классе окрестностных моделей. Представлены преимущества развития данного подхода, а именно улучшение интерпретируемости модели при одновременном обеспечении достаточной точности с обобщающей способностью и устойчивостью к шуму. Выделены основные этапы построения и представлены сферы применения иерархических динамических нейро-окрестностных моделей. Отмечено три способа представления их структуры: графический, теоретико-множественный и матричный. Графический способ представления основывается на графах, разделенных на два слоя, которые описывают связи между узлами по переходам и по выходам соответственно. Показаны схемы слоев и общая схема узла исследуемой модели по переходам и выходам. Теоретико-множественный способ описывает модель в виде множеств узлов и иерархических окрестностных связей между ними. Матричный способ позволяет представить модель в виде матриц смежности для переходов и выходов по состояниям и по внешним воздействиям соответственно. Приведено подробное описание иерархических динамических нейро-окрестностных моделей и нейронных сетей в узлах. Описан алгоритм идентификации разработанного подхода, показана схема алгоритма идентификации. Приведен пример построения иерархической динамической нейро-окрестностной модели прогноза общего энергопотребления бытовой техники в доме с учетом отопления и погодных условий в реализованной программе Python с автоматическим подбором оптимальных параметров модели. Приведено описание исходных данных, взятых с сайта Kaggle. Проведена подготовка данных, на основе которых выполнено обучение и тестирование полученной модели. Показана схема иерархической динамической нейро-окрестностной модели прогнозируемого процесса. Сделаны выводы по проделанному исследованию.

Сохранить в закладках
ИСПОЛЬЗОВАНИЕ ПРИНЦИПА МАКСИМАЛЬНОЙ ЭНТРОПИИ ДЛЯ КОНСТРУИРОВАНИЯ РОБАСТНЫХ ОЦЕНОК ПРИ БАЙЕСОВСКОМ ТОЧЕЧНОМ ЗАСОРЕНИИ. ЧАСТЬ II (2024)
Выпуск: № 2 (2024)
Авторы: Лисицин Даниил Валерьевич, Гаврилов Константин Викторович

Рассматривается развитие теории робастного оценивания параметров статистических моделей с привлечением аппарата теории информации. Анализируется подход А. М. Шурыгина, основанный на модели серии выборок со случайным точечным засорением (модели байесовского точечного засорения). В первой части нашей работы описан непараметрический способ выбора распределения засоряющей точки - посредством максимизации энтропии Шеннона или перекрестной энтропии в окрестности модельного распределения, ограниченной величиной дивергенции Кульбака - Лейблера. Такой способ нахождения плотности распределения засоряющей точки позволяет рассматривать получаемые оценки как робастные, причем обладающие свойством оптимальности. Полученные оценки мы называем обобщенными радикальными, поскольку их частным случаем являются радикальные оценки А. М. Шурыгина. Во второй части работы получено другое оптимальное решение на основе формализма А. Реньи (или эквивалентного с точки зрения нашей задачи формализма К. Цаллиса), дающее новое семейство оценок, частными случаями которого также являются некоторые известные оценки. Для выбора одной оценки из семейства, определяемого разными ограничениями на дивергенцию, предложен оптимизационный подход. Основные теоретические результаты, полученные в работе, иллюстрируются на примере оценивания параметра сдвига косинусного распределения.

Сохранить в закладках
ОБ АПРИОРНЫХ ОЦЕНКАХ ИНТЕГРАЛЬНОЙ НАГРУЗКИ УРАВНЕНИЯ КИРХГОФА (2024)
Выпуск: № 2 (2024)
Авторы: Бозиев Олег Людинович

Большое количество физических, биологических и других явлений и процессов описываются нагруженными уравнениями. Нелинейное гиперболическое уравнение Кирхгофа моделирует некоторые колебательные процессы и содержит нагрузку в виде рациональной степени m/n линейной функции от нормы искомого решения в пространстве H 1(Ω). Подобную нагрузку будем называть интегральной. В работе для данного уравнения рассматривается вторая смешанная задача с однородными граничными условиями. В силу сложности интегрирования нелинейных дифференциальных уравнений во многих случаях они с разной степенью точности аппроксимируются линейными уравнениями. При этом может оказаться, что линеаризованное уравнение весьма условно моделирует исследуемое явление. Целью настоящей работы является установление априорных оценок для интегральной нагрузки уравнения Кирхгофа, которые используются для его «корректной» линеаризации. Соответствующие результаты формулируются в виде теорем. В случае положительной степени m/n полученная оценка действительна для любых значений m и n. В отрицательном случае устанавливаются отдельные оценки для m < n, m = n и m > n. Во всех случаях производится переход от нестрого равенства априорной оценки к равенству, связывающему интегральную нагрузку с некоторой линейной функцией, зависящей от начальных условий и правой части уравнения. Для редукции уравнения Кирхгофа к линейному уравнению его интегральная нагрузка заменяется полученной функцией. Способ применим к уравнениям с интегральной нагрузкой как в главной части, так и в младших членах.

Сохранить в закладках
ИМИТАЦИОННАЯ МОДЕЛЬ ДВУХКАНАЛЬНОЙ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ С ОБМЕНОМ И ПОВТОРНЫМИ ЗАЯВКАМИ (2024)
Выпуск: № 1 (2024)
Авторы: Баркалов Сергей Алексеевич, СЕРЕБРЯКОВА ЕЛЕНА АНАТОЛЬЕВНА

Рассматриваются нестационарные эффекты при работе двухканальной RQ система массового обслуживания (СМО) с обменом заявками в процессе обслуживания. Исследование направлено на выявление особенностей функционирования гибридного кол-центра с параллельным обслуживанием человеком-диспетчером и интеллектуальным голосовым ботом. Заявки, не получившие обслуживания, переходят на «орбиты», откуда осуществляются повторные звонки. По истечении случайного времени, определяемого терпеливостью клиентов, заявки покидают «орбиты». Интеллектуальный бот обладает более высокой скоростью обслуживания в сравнении с диспетчером-человеком. Поток заявок на входе распределяется между каналами обслуживания случайным образом. Учитывается, что часть клиентов в ходе обслуживания может предпочесть переход к альтернативному диспетчеру. В процессе работы у диспетчера-человека имеются короткие перерывы для отдыха и длинный перерыв на обед. В эти временные промежутки обслуживание полностью осуществляется ботом. Прерывистость режимов обслуживания приводит к нестационарным эффектам в виде текущего изменения пропускной способности СМО. Поступающие заявки описываются пуассоновским процессом, когда обслуживание открыто. Численные расчеты основаны на дискретно-событийном имитационном моделировании системы. На каждом шаге таймер модельного времени увеличивается на фиксированную величину шага. Состояние системы за временной шаг изменяется случайным образом, как марковский процесс, т. е. вероятность перехода зависит только от текущего состояния СМО и не учитывает эффектов памяти. Предложен алгоритм имитационного моделирования, основанный на разбиении всего периода работы СМО на малые интервалы, в течение каждого из которых вероятности изменений малы. Наличие альтернатив в работе СМО приводит к ветвлению процесса. Статистический характер функционирования СМО учитывается в ансамбле реализаций компьютерной модели и характеризуется дисперсией результатов. В качестве примера проведено моделирование кол-центра жилищной управляющей компании, показавшее перспективность повышения доли интеллектуальных ботов в обслуживании звонков.

Сохранить в закладках
ПРИМЕНЕНИЕ МЕТОДОВ ОПТИМИЗАЦИИ В ЗАДАЧЕ РАСПРОСТРАНЕНИЯ ИНФОРМАЦИИ В СРЕДСТВАХ МАССОВОЙ КОММУНИКАЦИИ (2024)
Выпуск: № 1 (2024)
Авторы: Фурсов Дмитрий Викторович, Крылатов Александр Юрьевич, Свиркин Михаил Владимирович

Применение математических методов в различных прикладных областях играет большую роль при принятии управленческих решений. Оптимизационные модели являются неотъемлемой частью математического аппарата, используемого как различными государственными институтами, так и бизнесом для помощи лицам, принимающим решение в сложных условиях с целью проведения полного и объективного анализа предметной деятельности. Рассматривается оптимизационный подход к решению проблемы определения перечня площадок распространения информации в средствах массовой коммуникации. Сформулированы новые постановки задач целочисленного линейного программирования и многокритериальной оптимизации для моделирования распространения информации. Имплементирован алгоритм обработки статистических данных для формирования матрицы объектов-признаков. Реализованы и апробированы методы решения сформулированных задач оптимизации в задаче определения перечня площадок распространения информации. Проведен анализ чувствительности в задаче многокритериальной оптимизации, рассмотрены результаты численного моделирования при различных входных параметрах, сделаны соответствующие выводы и замечания. Актуальность продиктована нарастающей ролью информационных площадок и потребностью оптимизировать процесс принятия решений в области управления информацией.

Сохранить в закладках
ИССЛЕДОВАНИЕ ЦВЕТОВОЙ ЗАВИСИМОСТИ СВЕРТОЧНЫХ НЕЙРОННЫХ СЕТЕЙ В ЗАДАЧАХ КОМПЬЮТЕРНОГО ЗРЕНИЯ (2024)
Выпуск: № 1 (2024)
Авторы: Гладкий Сергей Леонидович, Халявин Савва Денисович

Рассматриваются проблемы зависимости сверточных нейронных сетей от цветовых параметров изображений. Выдвигаются гипотезы о том, что обучение нейронных сетей в задачах компьютерного зрения является зависимым от цветов объектов на изображениях обучающей выборки. Разработаны и проведены специальные эксперименты по обучению нейронных сетей на синтетических изображениях для подтверждения данных гипотез. Проведен анализ результатов экспериментов, который показывает наличие зависимости обучения сверточной сети от цветовых признаков объектов. Сформулированы методы преодоления некоторых выявленных проблем и задачи для дальнейших исследований.

Сохранить в закладках
ИСПОЛЬЗОВАНИЕ ПРИНЦИПА МАКСИМАЛЬНОЙ ЭНТРОПИИ ДЛЯ КОНСТРУИРОВАНИЯ РОБАСТНЫХ ОЦЕНОК ПРИ БАЙЕСОВСКОМ ТОЧЕЧНОМ ЗАСОРЕНИИ. ЧАСТЬ I (2024)
Выпуск: № 1 (2024)
Авторы: Лисицин Даниил Валерьевич, Гаврилов Константин Викторович

Развивается теория робастного оценивания параметров статистических моделей с привлечением аппарата теории информации. Рассмотрен подход А. М. Шурыгина, основанный на модели серии выборок со случайным точечным засорением (модели байесовского точечного засорения). Из предложенных А. М. Шурыгиным оценок, пожалуй, наиболее интересными свойствами обладают стойкие оценки. Хотя данный подход можно связать с подходом Ф. Хампеля к робастному оцениванию, необходимость при нахождении стойких оценок постулировать параметрический вид распределения засоряющей точки не позволяет считать это робастной процедурой. В первой части нашей работы предложен непараметрический способ выбора указанного распределения - посредством максимизации энтропии Шеннона в окрестности модельного распределения, ограниченной величиной дивергенции Кульбака - Лейблера. Такой способ нахождения плотности распределения засоряющей точки позволяет рассматривать получаемые оценки как робастные, причем обладающие свойством оптимальности. Полученные оценки мы называем обобщенными радикальными, поскольку их частным случаем являются радикальные оценки А. М. Шурыгина. Обобщенные радикальные оценки широко известны в зарубежных публикациях как оценки минимума логарифмической дивергенции степени плотности (гамма-дивергенции), при этом вопрос их оптимальности там не исследуется. К обобщенным радикальным относятся некоторые популярные оценки параметра сдвига: оценки Мешалкина (Уэлша), Эндрюса, Смита, Бернулли, бивес-оценка Тьюки, оценка Хьюбера типа урезанного среднего, обобщенные оценки Шарбонье. Также в первой части работы предложено использовать функционал перекрестной энтропии. Перекрестная энтропия, применяемая в качестве оптимизируемого функционала вместо энтропии Шеннона, позволяет получить семейство оценок с наиболее широким диапазоном значений параметра, задающего это семейство. К задаче максимизации перекрестной энтропии сводится задача максимизации математического ожидания функции потерь оценок максимального правдоподобия в модели байесовского точечного засорения. По этой причине обобщенные радикальные оценки могут интерпретироваться как защищенные от намеренного искажения оценок максимального правдоподобия. Во второй части работы получено другое оптимальное решение на основе формализма А. Реньи (или эквивалентного с точки зрения нашей задачи формализма К. Цаллиса), дающее новое семейство оценок, частными случаями которого также являются некоторые известные оценки. Для выбора одной оценки из семейства, определяемого разными ограничениями на дивергенцию, предложен оптимизационный подход, аналогичный таковому, приводящему к стойким оценкам, но, в отличие от последнего, остающийся непараметрическим. Основные теоретические результаты, полученные в работе, иллюстрируются во второй ее части на примере оценивания параметра сдвига косинусного распределения.

Сохранить в закладках
ГЕНЕРАЦИЯ УРОВНЕЙ ОДНОПОЛЬЗОВАТЕЛЬСКОЙ 3D-ИГРЫ НА ОСНОВЕ BSP-ДЕРЕВЬЕВ (2024)
Выпуск: № 1 (2024)
Авторы: Кравец Алла Григорьевна, Матохина Анна Владимировна, Драгунов Станислав Евгеньевич, Сальникова Наталия Анатольевна

Рассматриваются задачи генерации уровней для однопользовательских 3D игр и предлагается метод, направленный на ускорение и удешевление процесса разработки игровых уровней, раскрываются подходы и технологии, примененные для решения задач генерации уровней, реализации алгоритмов генерации комнат и путей между ними. После проведения анализа существующих методов генерации уровней выбран метод генерации BSP-tree, который может создавать уникальные уровни на основе входных переменных, позволяющий сократить сроки разработки игровых уровней. Создание бесконечного уровня - сложная задача, однако с использованием некоторых полезных советов и техник становится гораздо проще. Первым шагом для организации бесконечного уровня является создание пустого объекта, который служит основой для уровня, затем можно добавлять различные элементы окружения. Для достижения эффекта бесконечного уровня предлагается использовать технику «прокрутки». Это означает, что когда игрок движется в одном направлении, то объекты в уровне перемещаются в противоположном направлении. Это создает иллюзию бесконечности и позволяет игроку продолжать исследовать новые области уровня.

Сохранить в закладках
РАЗРАБОТКА ПРОГРАММНЫХ СРЕДСТВ ДЛЯ АВТОМАТИЗАЦИИ ПРОЦЕССА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ТЕНЗОРА СТРУКТУРЫ ПОРИСТЫХ МАТЕРИАЛОВ (2024)
Выпуск: № 1 (2024)
Авторы: Киченко Александр Александрович, Тверье Виктор Моисеевич, Сотин Александр Валерьевич

Идея построения специального тензора для описания параметров структурно-неоднородных материалов возникла из целого ряда попыток количественно охарактеризовать микроструктуру упругого пористого материала. Использование специальных тензорных величин для описания стереометрических характеристик структурно-анизотропных материалов позволяет в компактном виде выразить значимые структурные параметры исследуемых объектов. Преимущественная ориентация пор внутри образца хорошо описывается тензором структуры и, алгебраически связанным с ним тензором анизотропии. Приведенные в работе математические выкладки, позволили формализовать процесс вычисления всех необходимых для построения тензора структуры параметров. Алгоритмизация метода определения среднего расстояния между порами, легла в основу разработанного специализированного программного обеспечения для расчета компонент тензора структуры. Верификация программного модуля была осуществлена путем проведения стереологического исследования ряда идеализированных тестовых структур и образца пористого материала, для которого тензор структуры был известен заранее. Полученные результаты не противоречили природной действительности, совпадали с ранее полученными данными и описывали степень анизотропии исследованных структур с высокой степенью точности. В качестве демонстрации практического использования разработанного программного комплекса в работе представлены результаты исследования образца трабекулярной костной ткани шейки бедренной кости человека и образца автоклавного газобетона. Проведены вычисления всех необходимых параметров и приведены изображения эллипса структуры исследованных пористых материалов. Из полученных результатов видно, что тензор структуры способен описывать стереометрические характеристики натуральных и искусственных пористых структур, а пакет проблемно-ориентированных программ позволяет автоматизировать процесс определения всех необходимых параметров.

Сохранить в закладках