Архив статей журнала

ОБ АПРИОРНЫХ ОЦЕНКАХ ИНТЕГРАЛЬНОЙ НАГРУЗКИ УРАВНЕНИЯ КИРХГОФА (2024)
Выпуск: № 2 (2024)
Авторы: Бозиев Олег Людинович

Большое количество физических, биологических и других явлений и процессов описываются нагруженными уравнениями. Нелинейное гиперболическое уравнение Кирхгофа моделирует некоторые колебательные процессы и содержит нагрузку в виде рациональной степени m/n линейной функции от нормы искомого решения в пространстве H 1(Ω). Подобную нагрузку будем называть интегральной. В работе для данного уравнения рассматривается вторая смешанная задача с однородными граничными условиями. В силу сложности интегрирования нелинейных дифференциальных уравнений во многих случаях они с разной степенью точности аппроксимируются линейными уравнениями. При этом может оказаться, что линеаризованное уравнение весьма условно моделирует исследуемое явление. Целью настоящей работы является установление априорных оценок для интегральной нагрузки уравнения Кирхгофа, которые используются для его «корректной» линеаризации. Соответствующие результаты формулируются в виде теорем. В случае положительной степени m/n полученная оценка действительна для любых значений m и n. В отрицательном случае устанавливаются отдельные оценки для m < n, m = n и m > n. Во всех случаях производится переход от нестрого равенства априорной оценки к равенству, связывающему интегральную нагрузку с некоторой линейной функцией, зависящей от начальных условий и правой части уравнения. Для редукции уравнения Кирхгофа к линейному уравнению его интегральная нагрузка заменяется полученной функцией. Способ применим к уравнениям с интегральной нагрузкой как в главной части, так и в младших членах.

Сохранить в закладках