- L. P. English, Improving Data Warehouse and Business Information Quality: Methods for Reducing Costs and Increasing Profits (Wiley, New York, 1999).
- D. Pyle, Data Preparation for Data Mining (Morgan Kaufmann, San Francisco, 1999).
- D. Loshin, Enterprise Knowledge Management: The Data Quality Approach (Morgan Kaufmann, San Francisco, 2001).
- T. C. Redman, Data Quality: The Field Guide (Digital Press, Boston, 2001).
- T. Dasu and T. Johnson, Exploratory Data Mining and Data Cleaning (Wiley, Hoboken, 2003).
- R. Y. Wang, V. C. Storey, and C. P. Firth, “A Framework for Analysis of Data Quality Research”, IEEE Trans. Knowl. Data Eng. 7 (4), 623-640 (1995).
- Y. Wand and R. Y Wang, “Anchoring Data Quality Dimensions in OntologicalFoundations”, Commun. ACM. 39 (11), 86-95, 1996.
- D. P. Ballou and G. K. Tayi, “Enhancing Data Quality in Data Warehouse Environments”, Commun. ACM. 42 (1), 73-78 (1999).
- J. E. Olson, Data Quality: The Accuracy Dimension (Morgan Kaufmann, San Francisco, 2003).
-
J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques (Morgan Kaufmann, San Francisco, 2012).
-
The Top500 list of the world's most powerful supercomputers. https://www.top500.org/. Cited September 26, 2021.
-
The Top50 list of supercomputers in the Russian Federation. http://top50.supercomputers.ru/newsfeed}. Cited September 26, 2021.
-
MSU HPC Center. https://parallel.ru/cluster. Cited September 26, 2021.
-
V. V. Voevodin, A. S. Antonov, D. A. Nikitenko, et al., "Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community", Supercomput. Front. Innov.6 (2), 4-11 (2019). EDN: SYPENS
-
V. Voevodin, A. Antonov, D. Nikitenko, et al., "Lomonosov-2: Petascale Supercomputing at Lomonosov Moscow State University", in Contemporary High Performance Computing: from Petascale toward Exascale (CRC Press, Boca Raton, 2019), Vol. 3, pp. 305-330.
-
S. I. Sobolev, A. S. Antonov, P. A. Shvets, et al., "Evaluation of the Octotron System on the Lomonosov-2 Supercomputer", in Proc. Int. Conf. on Parallel Computational Technologies, Rostov-on-Don, Russia, April 2-6, 2018 (South Ural State Univ., Chelyabinsk, 2018), pp. 176-184.
-
A. V. Adinets, P. A. Bryzgalov, Vad. V. Voevodin, et al., "Job Digest: An Approach to Dynamic Analysis of Job Characteristics on Supercomputers", Numerical Methods and Programming 13, 160-166 (2012). EDN: PIXNBT
-
D. A. Nikitenko, K. S. Stefanov, S. A. Zhumatiy, et al., "System Monitoring-Based Holistic Resource Utilization Analysis for Every User of a Large HPC Center", in Lecture Notes in Computer Science (Springer, Cham, 2016), Vol. 10049, pp. 305-318.
-
D. Nikitenko, S. Zhumatiy, and P, Shvets, "Making Large-Scale Systems Observable - Another Inescapable Step towards Exascale", Supercomput. Front. Innov. 3 (2), 72-79 (2016). EDN: QBRGAM
-
P. Shvets, Vad. Voevodin, and D. Nikitenko, "Approach to Workload Analysis of Large HPC Centers", in Parallel Computational Technologies (Springer, Cham, 2020), Vol. 1263, pp. 16-30.
-
D. A. Nikitenko, Vad. V. Voevodin, and S. A. Zhumatiy, "Deep Analysis of Job State Statistics on Lomonosov-2 Supercomputer", Supercomput. Front. Innov. 5 (2), 4-10 (2018). EDN: VSELEI
-
S. I. Sobolev, Vl. V. Voevodin, A. S. Antonov, et al., "Making Supercomputers Smart: the Moscow State University Experience", in Proc. 27th Int. Symp. on Nuclear Electronics and Computing (NEC 2019), Budva, Becici, Montenegro, September 30-October 4, 2019 CEUR Workshop Proc. 2507, 1-6 (2019).
-
A. Shah, M. Müller, and F. Wolf, "Estimating the Impact of External Interference on Application Performance", in Lecture Notes in Computer Science (Springer, Cham, 2018), Vol. 11014, pp. 46-58.
-
T. Hoefler, T. Schneider, and A. Lumsdaine, "Characterizing the Influence of System Noise on Large-Scale Applications by Simulation", in Proc. ACM/IEEE Conf. on Supercomputing (SC 2010), New Orlean, USA, November 13-19, 2010 (IEEE Press, Washington, DC, 2010),. DOI: 10.1109/SC.2010.12
-
D. A. Nikitenko, F. Wolf, B. Mohr, et al., "Influence of Noisy Environments on Behavior of HPC Applications", Lobachevskii J. Math. 42 (8), 1560-1570 (2021). EDN: KINPFJ
-
pandas: Python Data Analysis Library. https://pandas.pydata.org/. Cited September 26, 2021.
-
M. Chien and A. Jain, "Gartner Magic Quadrant for Data Quality Solutions", https://www.gartner.com/en/documents/3988016/magic-quadrant-for-data-quality-solutions. Cited September 26, 2021.