-
Савостьянов К.В. Современные алгоритмы генетической диагностики редких наследственных болезней у российских пациентов: Информационные материалы. М.: ООО “Полиграфист и издатель”, 2022. 452 с. Доступно по:. EDN: RDUZGH
-
Kim J.H., Shinde D.N., Reijnders M.R.F. et al. De novo mutations in SON disrupt RNA splicing of genes essential for brain development and metabolism, causing an intellectual-disability syndrome. Am J Hum Genet 2016;99(3):711-9. DOI: 10.1016/j.ajhg.2016.06.029
-
Tang S., You J., Liu L. et al. Expanding the mutational spectrum of ZTTK syndrome: A de novo variant with global developmental delay and malnutrition in a Chinese patient. Mol Genet Genomic Med 2023;11(8):e2188. DOI: 10.1002/mgg3.2188 EDN: FFCPRQ
-
Regan-Fendt K.E., Izumi K. Nuclear speckleopathies: Developmental disorders caused by variants in genes encoding nuclear speckle proteins. Hum Genet 2023. DOI: 10.1007/s00439-023-02540-6
-
Lu X., Ng H.H., Bubulya P.A. The role of SON in splicing, development, and disease. Wiley Interdiscip Rev RNA 2014;5(5):637-46. DOI: 10.1002/wrna.1235 EDN: KSICSD
-
Zhu X., Petrovski S., Xie P. et al. Whole-exome sequencing in undiagnosed genetic diseases: Interpreting 119 trios. Genet Med 2015;17(10):774-81. DOI: 10.1038/gim.2014.191 EDN: VFJDYR
-
Takenouchi T., Miura K., Uehara T. et al. Establishing SON in 21q22.11 as a cause a new syndromic form of intellectual disability: Possible contribution to Braddock-Carey syndrome phenotype. Am J Med Genet A 2016;170(10):2587-90. DOI: 10.1002/ajmg.a.37761
-
Tokita M.J., Braxton A.A., Shao Y. et al. De novo truncating variants in SON cause intellectual disability, congenital malformations, and failure to thrive. Am J Hum Genet 2016;99(3):720-7. DOI: 10.1016/j.ajhg.2016.06.035
-
Peng F., Zhu L., Hou Y. et al. Identification of a frameshift mutation in SON gene via whole exome sequencing in a patient with ZTTK syndrome. Res Square 2021. DOI: 10.21203/rs.3.rs-191620/v1
-
Indelicato E., Zech M., Amprosi M. et al. Untangling neurodevelopmental disorders in the adulthood: A movement disorder is the clue. Orphanet J Rare Dis 2022;17(1):55. DOI: 10.1186/s13023-022-02218-8 EDN: KFEPZK
-
Kushary S.T., Revah-Politi A., Barua S. et al. ZTTK syndrome: Clinical and molecular findings of 15 cases and a review of the literature. Am J Med Genet A 2021;185(12):3740-53. DOI: 10.1002/ajmg.a.62445
-
Dingemans A.J.M., Truijen K.M.G., Kim J.H. et al. Establishing the phenotypic spectrum of ZTTK syndrome by analysis of 52 individuals with variants in SON. Eur J Hum Genet 2022;30(3):271-81. DOI: 10.1038/s41431-021-00960-4 EDN: ORUEPU
-
Pietrobattista A., Della Volpe L., Francalanci P. et al. The expanding phenotype of zttk syndrome due to the heterozygous variant of SON gene focusing on liver involvement: Patient report and literature review. Genes (Basel) 2023;14(3):739. DOI: 10.3390/genes14030739 EDN: RYTRRI
-
Vasquez-Forero D.M., Masotto B., Ferrer-Avargues R. et al. Case report: A novel SON mutation in a Colombian patient with ZTTK syndrome. Front Genet 2023;14:1183362. DOI: 10.3389/fgene.2023.1183362 EDN: LCYYHC
-
El-Said A., Morales J.L., Rossi G. et al. Metabolic stroke as a clinical manifestation of Zhu-Tokita-Takenouchi-Kim syndrome: A case series. Neurol Genet 20238;9(3):e200072. DOI: 10.1212/NXG.0000000000200072
-
Eid M., Bhatia S. Novel de novo heterozygous variants in the SON gene causing ZTTK syndrome: A case report of two patients and review of neurological findings. Child Neurol Open 2022;9:2329048X221119658. DOI: 10.1177/2329048X221119658
-
Pasca L., Politano D., Cavallini A. et al. A novel de novo hetero-zygous mutation in the SON gene associated with septo-optic dysplasia: A new phenotype. Neuropediatrics 2023. DOI: 10.1055/a-2114-4387
-
Langford J., Vukadin L., Carey J.C. et al. SON-related Zhu- Tokita-Takenouchi-Kim syndrome with recurrent hemiplegic migraine: Putative role of PRRT2. Neurol Genet 2023;9(3):e200062. DOI: 10.1212/NXG.0000000000200062 EDN: CQPSNL
-
Hudec J., Kosinova M. Anesthesia of the patient with Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome: A case report. Children (Basel) 2022;9(6):869. DOI: 10.3390/children9060869 EDN: SEJSTW
-
Pavone P., Saia F., Pappalardo X. et al. Novel malformations: Chiari type 1 and hydrocephalus in Zhu-Tokita-Takenouchi-Kim syndrome and novel SON variants. Clin Case Rep 2022;10(12):e6529. DOI: 10.1002/ccr3.6529 EDN: VANKNS
-
Ueda M., Matsuki T., Fukada M. et al. Knockdown of SON, a mouse homologue of the ZTTK syndrome gene, causes neuronal migration defects and dendritic spine abnormalities. Mol Brain 2020;13(1):80. DOI: 10.1186/s13041-020-00622-4 EDN: EAIWUJ
-
Halliday B.J., Baynam G., Ewans L. et al. Distinctive brain malformations in Zhu-Tokita-Takenouchi-Kim syndrome. AJNR Am J Neuroradiol 2022;43(11):1660-6. DOI: 10.3174/ajnr.A7663 EDN: HANPCK
-
Stemm-Wolf A.J., O'Toole E.T., Sheridan R.M. et al. The SON RNA splicing factor is required for intracellular trafficking structures that promote centriole assembly and ciliogenesis. Mol Biol Cell 2021;32(20):ar4. DOI: 10.1091/mbc.E21-06-0305 EDN: IXSQYS
-
Youn Y.H., Han Y.G. Primary cilia in brain development and diseases. Am J Pathol 2018;188(1):11-22. DOI: 10.1016/j.ajpath.2017.08.031
-
Kim J.H., Park E.Y., Chitayat D. et al. SON haploinsufficiency causes impaired pre-mRNA splicing of CAKUT genes and heterogeneous renal phenotypes. Kidney Int 2019;95(6):1494-504. DOI: 10.1016/j.kint.2019.01.025
-
Vukadin L., Park B., Mohamed M. et al. A mouse model of Zhu-Tokita-Takenouchi-Kim syndrome reveals indispensable SON functions in organ development and hematopoiesis. JCI Insight 2024;9(5):e175053. DOI: 10.1172/jci.insight.175053 EDN: LZEJIA
-
Sharma A., Markey M., Torres-Muñoz K. et al. SON maintains accurate splicing for a subset of human pre-mRNAs. J Cell Sci 2011;124(Pt 24):4286-98. DOI: 10.1242/jcs.092239