Статья: A LINEAR INVERSE PROBLEMFOR A THREE-DIMENSIONAL MIXED-TYPE EQUATION OF THE SECOND KIND, SECOND ORDERWITH SEMI-NONLOCAL BOUNDARY CONDITION IN AN UNBOUNDED PARALLELEPIPED (2024)

Читать онлайн

We have investigated the correctness of a linear inverse problem for a three-dimensional second kind, second order mixed-type equation in an unbounded parallelepiped. The existence and uniqueness theorems for a generalized solution to a linear inverse problem for the equation with a semi-nonlocal boundary condition are proved in a certain class of integrable functions. The ε-regularization, a priori estimates, approximation sequences, and Fourier transform methods are applied.

Ключевые фразы: mixed-type equation of the second kind second-order, linear inverse problem with a semi-nonlocal boundary condition, well-posedness of problem, ε-regularization, a priori estimates, approximation sequences method, FOURIER TRANSFORM
Автор (ы): Джамалов Сирожиддин Зухриддинович
Соавтор (ы): Sipatdinova B. K.
Журнал: ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ

Предпросмотр статьи

Идентификаторы и классификаторы

УДК
517.95. Дифференциальные уравнения с частными производными
Для цитирования:
ДЖАМАЛОВ С. З., SIPATDINOVA B. K. A LINEAR INVERSE PROBLEMFOR A THREE-DIMENSIONAL MIXED-TYPE EQUATION OF THE SECOND KIND, SECOND ORDERWITH SEMI-NONLOCAL BOUNDARY CONDITION IN AN UNBOUNDED PARALLELEPIPED // ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ. 2024. Т. 9 № 3
Текстовый фрагмент статьи