Введение. Рассматривается вопрос формирования «острова тепла», отличающегося активной термо- и аэродинамической характеристикой в воздушной зоне городского приземного слоя атмосферы «острова тепла». Изучение теплового режима города, опирающееся на местные климатические и экологические данные, является наиболее актуальной задачей в вопросе формирования и трансформации городского «острова тепла». Условия комфортного пребывания человека в городах, расположенных в южных широтах, неразрывно связаны с радиационным воздействием под влиянием солнечной радиации, которое усугубляется влиянием «острова тепла». Составление модели трансформационных изменений воздушного купола «острова тепла», а также зависимость трансформации над различными видами морфотипов деятельной поверхности городской инфраструктуры - основная задача исследования.
Методы и материалы. На основе обобщения ряда результатов метеорологических, климатических, микроклиматических и теплофизических исследований разработан программный комплекс для изучения процесса формирования и трансформации «острова тепла». Использованы данные в виде спутниковых снимков с космического аппарата Landsat-8 с сенсором TIRS.
Результаты. Анализ результатов теоретических исследований и расчетов формирования и трансформации тепловой оболочки городской территории при помощи компьютерного моделирования показал зависимость качественных и количественных термодинамических и аэродинамических характеристик «острова тепла» и коэффициента турбулентности. Установлено, что коэффициент турбулентности напрямую влияет на трансформацию купола «острова тепла» в направлении перемещения основного потока ветра. При этом чем больше коэффициент, тем динамичнее трансформация купола по длине X и по высоте Z.
Выводы. Разработанная методика качественной и количественной оценки тепло-ветрового режима модели городского «острова тепла» и его трансформации позволяет предварительно прогнозировать и производить оценку температурного поля тепловой воздушной оболочки городской среды. Составлена модель трансформационных изменений воздушного купола «острова тепла» с разнообразными морфотипами деятельной поверхности городской инфраструктуры.
Идентификаторы и классификаторы
Демографическое развитие и процесс урбанизации являются одними из характерных особенностей современной градоэкологии. Степень воздействия человека при этом на окружающую среду сопоставима с естественными процессами. Корректная оценка данного воздействия — приоритетная в направлении экологии в целях ее регулирования. В связи с этим актуальный вопрос в градоэкологии — изучение формирования городского «острова тепла» (ГОТ) и его трансформация.
Список литературы
1. Oke T.R. City size and the urban heat island // Atmospheric Environment (1967). 1973. Vol. 7. Issue 8. Pp. 769-779. DOI: 10.1016/0004-6981(73)90140-6
2. Bosma C., Hein L. The climate and land use change nexus: implications for designing adaptation and conservation investment strategies in Sub-Saharan Africa // Sustainable Development. 2023. Vol. 31. Issue 5. Pp. 3811-3830. DOI: 10.1002/sd.2627 EDN: ENXSWL
3. Baykara M. An assessment of long-term urban heat island impact on Istanbul’s climate // International Journal of Environment and Geoinformatics. 2023. Vol. 10. Issue 2. Pp. 40-47. DOI: 10.30897/ijegeo.1230381 EDN: WOGYIX
4. Huang K., Leng J., Xu Y., Li X., Cai M., Wang R. et al. Facilitating urban climate forecasts in rapidly urbanizing regions with land-use change modeling // Urban Climate. 2021. Vol. 36. P. 100806. DOI: 10.1016/j.uclim.2021.100806 EDN: OAGIYN
5. Rao P., Tassinari P., Torreggiani D. Exploring the land-use urban heat island nexus under climate change conditions using machine learning approach: a spatio-temporal analysis of remotely sensed data // Heliyon. 2023. Vol. 9. Issue 8. P. e18423. DOI: 10.1016/j.heliyon.2023.e18423 EDN: XHSPZC
6. Miner M.J., Taylor R.A., Jones C., Phelan P.E. Efficiency, economics, and the urban heat island // Environment and Urbanization. 2017. Vol. 29. Issue 1. Pp. 183-194. DOI: 10.1177/0956247816655676 EDN: YFDBMX
7. Degerli B.C., Cetin M. Evaluation of UTFVI index effect on climate change in terms of urbanization // Environmental Science and Pollution Research. 2023. Vol. 30. Issue 30. Pp. 75273-75280. DOI: 10.1007/s11356-023-27613-x EDN: GDGVLQ
8. Giannaros C., Agathangelidis I., Papavasileiou G., Galanaki E., Kotroni V., Lagouvardos K. et al. The extreme heat wave of July-August 2021 in the Athens urban area (Greece): Atmospheric and human-biometeorological analysis exploiting ultra-high resolution numerical modeling and the local climate zone framework // Science of The Total Environment. 2023. Vol. 857. P. 159300. DOI: 10.1016/j.scitotenv.2022.159300 EDN: OBRUQQ
9. Данилина Н.В., Власов Д.Н. “Здоровый” город как базовая концепция территориального развития // Экология урбанизированных территорий. 2020. № 2. С. 112-119. DOI: 10.24411/1816-1863-2020-12112 EDN: KDYVWS
10. Алексеева Л.И., Горлач И.А., Кислов А.В. Вертикальная структура и сезонные особенности “острова тепла” и распределения влажности над Москвой по спутниковым данным // Метеорология и гидрология. 2019. № 8. С. 107-118. EDN: EEYWIE
11. Гиясов А., Сокольская О.Н. Формирование городской застройки с учетом экологических факторов атмосферной среды в жарких маловетреных и штилевых климатических условиях: монография. Краснодар: ПринтТерра, 2016. 140 с. EDN: WLTSOP
12. Ле М.Т., Бакаева Н.В. Формирование средо-защитных объектов городской среды для условий жаркого и влажного климата // Промышленное и гражданское строительство. 2021. № 9. С. 52-59. DOI: 10.33622/0869-7019.2021.09.52-59 EDN: GROODL
13. Матвеев Л.Т., Матвеев Ю.Л. Формирование и особенности “острова тепла” в большом городе // Доклады Академии наук. 2000. Т. 370. № 2. С. 249-252. EDN: YNRFIR
14. Мохов И.И. Связь интенсивности “острова тепла” города с его размерами и количеством населения // Доклады Академии наук. 2009. Т. 427. № 4. С. 530-533. EDN: KPTVAT
15. Бакаева Н.В., Черняева И.В. Алгоритм оценки градостроительной деятельности на основе принципов биосферной совместимости // Градостроительство и архитектура. 2019. Т. 9. № 2 (35). С. 5-14. DOI: 10.17673/Vestnik.2019.02.1 EDN: TAIUHV
16. Кузнецова И.Н., Брусова Н.Е., Нахаев М.И. Городской “остров тепла” в Москве: определение, границы, изменчивость // Метеорология и гидрология. 2017. № 5. С. 49-61. EDN: YNWCKX
17. Демин В.И. О роли антропогенных и естественных факторов в оценке городского “острова тепла” // Современные проблемы дистанционного зондирования Земли из космоса. 2019. Т. 16. № 5. С. 25-33. DOI: 10.21046/2070-7401-2019-16-5-25-33 EDN: QKMWZD
18. Оленьков В.Д., Бирюков А.Д., Сухоруков В.А. Использование данных дистанционного зондирования земли для построения карты городского “острова тепла” // Фундаментальные, поисковые и прикладные исследования Российской академии архитектуры и строительных наук по научному обеспечению развития архитектуры, градостроительства и строительной отрасли Российской Федерации в 2019 году: сб. науч. тр. РААСН. 2020. С. 286-294. EDN: JYFGGF
19. Балдина Е.А., Константинов П., Грищенко М., Варенцов М. Исследование городских “островов тепла” с помощью данных дистанционного зондирования в инфракрасном тепловом диапазоне // Земля из космоса: наиболее эффективные решения. 2015. № S. С. 38-42. EDN: UIQLYF
20. Faurie C., Varghese B.M., Liu J., Bi P. Association between high temperature and heatwaves with heat-related illnesses: a systematic review and meta-analysis // Science of The Total Environment. 2022. Vol. 852. P. 158332. DOI: 10.1016/j.scitotenv.2022.158332 EDN: OQIMZZ
21. Cecilia A., Casasanta G., Petenko I., Conidi A., Argentini S. Measuring the urban heat island of Rome through a dense weather station network and remote sensing imperviousness data // Urban Climate. 2023. Vol. 47. P. 101355. DOI: 10.1016/j.uclim.2022.101355 EDN: SAKFAE
22. Erdem Okumus D., Terzi F. Evaluating the role of urban fabric on surface urban heat island: the case of Istanbul // Sustainable Cities and Society. 2021. Vol. 73. P. 103128. DOI: 10.1016/j.scs.2021.103128 EDN: GFMTGZ
23. Meili N., Paschalis A., Manoli G., Fatichi S. Diurnal and seasonal patterns of global urban dry islands // Environmental Research Letters. 2022. Vol. 17. Issue 5. P. 054044. DOI: 10.1088/1748-9326/ac68f8 EDN: ZAXJYJ
24. Исаков С.В., Шкляев В.А. Определение суммарного влияния антропогенноизменных поверхностей на возникновение эффекта “городского острова тепла” с использованием геоинформационных систем // Вестник Оренбургского государственного университета. 2014. № 1 (162). С. 178-182. EDN: RWUDXJ
25. Chander G., Markham B.L., Helder D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors // Remote Sensing of Environment. 2009. Vol. 113. Issue 5. Pp. 893-903. DOI: 10.1016/j.rse.2009.01.007
26. Khorrami B., Heidarlou H.B., Feizizadeh B. Evaluation of the environmental impacts of urbanization from the viewpoint of increased skin temperatures: a case study from Istanbul, Turkey // Applied Geomatics. 2021. Vol. 13. Issue 3. Pp. 311-324. DOI: 10.1007/s12518-020-00350-3 EDN: IPLVYN
Выпуск
Другие статьи выпуска
Согласно стратегическим приоритетам Российской Федерации в области энергетики энергосбережение и рациональное использование ресурсов выступает фокусом внимания в ходе развития и функционирования сфер топливно-энергетического комплекса страны. Однако энергетические ресурсы России используются с недостаточной эффективностью, а высокие значения энергоемкости валового внутреннего продукта страны свидетельствуют о сильной изношенности основных фондов и их технологической отсталости. Отечественная сфера теплоснабжения, являющаяся значимой частью топливно-энергетического комплекса страны, показывает низкую эффективность и надежность, о чем свидетельствуют рост количества аварий, высокие потери тепла в сетях и значительная доля инфраструктуры, нуждающейся в замене. Один из инструментов, способствующих осуществлению в сфере теплоснабжения процессов ресурсо- и энергосбережения, - использование инноваций, позволяющих ускорить темпы развития сферы в стратегической перспективе. Цель исследования - формирование концептуального подхода к управлению инновационным развитием сферы теплоснабжения.
Материалы и методы. Нормативная основа исследования - законодательные акты Российской Федерации, регулирующие деятельность теплоснабжения и определяющие направления государственной энергетической политики. Работа базируется на фундаментальных теориях управления и теории инноваций. Методической основой исследования выступают сложившиеся в экономической литературе подходы к определению инновационного климата и инновационного потенциала организаций, подходы к оценке эффективности внедрения и реализации инноваций, а также положения системного, проектного и стейкхолдерского подходов к управлению.
Результаты. Результатом исследования является сформированный концептуальный подход к управлению инновационным развитием сферы теплоснабжения, конкретизирующий условия, способствующие инновационному развитию, и определяющий возможность разработки методов обеспечения данных условий для достижения целей инновационного развития теплоснабжения.
Выводы. Предложенный инструмент управления инновационным развитием сферы теплоснабжения позволяет реализовывать стратегические перспективы ее развития в фокусе ресурсо- и энергосбережения с опорой на применение инновационных материалов, технологий и систем управления.
Грузоподъемные механизмы играют важную роль в современном строительном производстве, обеспечивая эффективный и безопасный способ перемещения и подъема материалов и строительных конструкций. Стоянки, путь движения, зоны обслуживания грузоподъемных механизмов отражены на строительных генеральных планах. Проектирование строительной площадки начинается с размещения на ней грузоподъемных механизмов, ведь именно они задают размеры зоны производства работ, местоположение временных дорог, площадок складирования и бытового городка. В общепринятой практике при сравнении вариантов кранов учитывают технико-экономические показатели, связанные с приобретением, арендой и эксплуатацией механизма, не принимая во внимание то, как тот или иной вариант механизации влияет на расположение объектов строительной инфраструктуры и технико-экономические показатели стройгенплана. В связи с возрастающей стесненностью застраиваемых территорий необходим пересмотр системы технико-экономических показателей оценки стройгенпланов с учетом вариантов использования различных видов грузоподъемных механизмов.
Материалы и методы. Изучена нормативно-правовая база, регламентирующая организацию строительной площадки, размещение подъемных механизмов и безопасное строительное производство. Проанализирована проектная и рабочая документация: проекты организации строительства, проекты производства работ, проекты производства работ с применением подъемных сооружений. Выполнено вариантное технологическое проектирование стройгенпланов и оценено влияние принятого грузоподъемного механизма на компактность строительной площадки при возведении малоэтажных объектов.
Результаты. Полученные результаты расширяют представление о выборе грузоподъемных механизмов для возведения малоэтажных объектов. Представленными показателями оценки, учитывающими расположение грузоподъемных кранов на строительной площадке и влияющими на компактность стройгенплана, предлагается дополнить систему технико-экономических показателей оценки эффективности принятых технологических решений.
Выводы. Проектирование строительных генеральных планов должно быть вариантным с рассмотрением различных грузоподъемных механизмов; эффективность выбора крана должна определяться не только системой технико-экономических показателей, но и оценкой влияния на строительную площадку в целом.
Введение. Термическая коррозия цементного камня (ЦК) представляет собой серьезную проблему на объектах коммунального хозяйства и других сооружениях, эксплуатируемых в условиях повышенной температуры и влажности. Этот вид коррозии достаточно хорошо исследован специалистами по тампонажным работам, однако слабо изучен в строительном материаловедении. В связи с тем, что технологии тампонажных и строительных работ имеют существенные различия, необходимы дальнейшие исследования в этой области.
Материалы и методы. Для исследований использовали золу уноса Смоленской ГЭС, доменный гранулированный шлак Новолипецкого металлургического комбината в дозировке 30 %, в качестве вяжущего - портландцемент ЦЕМ I 42,5 Н ЗАО «Осколцемент» (ГОСТ 31108-2020). Предел прочности при сжатии и изгибе образцов определяли на гидравлическом прессе ПГМ-100МГ4. Для анализа продуктов гидратации использовали рентгенофлуоресцентный спектрометр ARL 9900 Work Station, синхронный термоанализатор STA 449 F1 Jupiter NETZSCH, микроструктуру ЦК изучали с помощью РЭМ Tescan Mira 3.
Результаты. Установлено, что активные минеральные добавки золы и шлака повышают коэффициент термической стойкости ЦК с 0,47 до 0,69 (шлак) и 0,72 (зола) к 12 мес. испытаний. При помощи комплексного применения методов рентгенофазового и дериватографического анализов с электронно-микроскопическими исследованиями выявлены значительные отличия между продуктами гидратации в нормальных и термовлажностных условиях. Структура камня при длительном твердении в термовлажностных условиях имеет сложный и неоднородный характер, наряду с тоберморитовым гелем происходит образование хорошо закристаллизованных гидросиликатов кальция различной основности.
Выводы. Добавление активных минеральных добавок золы и доменного гранулированного шлака способствует повышению термической стойкости ЦК. При повышенной температуре и влажности интенсифицируется образование низкоосновных гидросиликатов, что нивелирует разницу между растворимостью зон срастания и изолированных частиц и тем самым способствует повышению термической устойчивости системы.
Одним из распространенных строительных материалов является ячеистый бетон. Повышение его эффективности может быть обеспечено проведением комплексной модификации. Предложено рецептурно-технологическое решение по получению неавтоклавного пенобетона, которое заключается в применении комплекса модифицирующих добавок, включающих минеральные дисперсные и микроармирующие компоненты. Их введение способствует стабилизации пенобетонной смеси, регулированию процессов структурообразования и управления эксплуатационными показателями готового материала.
Материалы и методы. Использовались портландцемент марки ЦЕМ I 42,5Н, протеиновый пенообразователь «Эталон». Модифицирование пенобетона осуществлялось: кварцевой суспензией, получаемой путем мокрого помола кварцевого песка, синтезированным ангидритом, активатором твердения Na2SO4, базальтовой и стеклянной фибрами. Основные физико-механические характеристики пенобетона определялись по действующим нормативно-техническим документам. Микроструктура изучалась посредством растровой электронной микроскопии.
Результаты. Установлено влияние рецептурных факторов на эксплуатационные показатели качества неавтоклавного пенобетона теплоизоляционного назначения, проведена многокритериальная оптимизация, определены рациональные составы. Получены материалы с маркой по плотности D500 и классом по прочности B1,5-В2.
Выводы. Замена части портландцементного вяжущего на дисперсный модификатор в комплексе с микроармирующими волокнами позволяет получать материалы с повышенными свойствами при сниженных затратах на производство, а именно за счет оптимизации ячеистой структуры повышаются показатели по прочности при сохранении значений плотности и теплопроводности. Данное рецептурное решение приводит к уплотнению и упрочнению межпоровых перегородок, как следствие, «монолитизации» матрицы и каркасной структуры композита, создаваемой микроармирующими компонентами. Материал характеризуется полидисперсной пористостью с широким диапазоном размеров пор с формой, переходящей с правильной округлой на многогранную. В результате повышаются физико-механические и теплоизолирующие показатели пенобетона неавтоклавного твердения.
Существующие нормативные методики не всегда адекватно описывают динамический отклик высотных зданий при ветровых воздействиях, особенно с учетом сложной геометрии и взаимодействия с окружающей застройкой. В данном исследовании разработана методика численного моделирования динамического отклика высотных зданий при ветровых воздействиях, учитывающая аэродинамическую интерференцию и разрешающая спектр турбулентных пульсаций на основе нестационарного CFD-моделирования и прямого динамического конечно-элементного анализа. Показан пример использования данной методики и численные результаты моделирования динамического отклика при разных углах атаки ветра башни «Эволюция», входящей в состав ММДЦ «Москва-Сити».
Материалы и методы. Методика разделяет задачу на два этапа: нестационарное аэродинамическое моделирование и расчет динамической реакции конструкции. Для этого разработаны аэродинамические модели комплекса зданий ММДЦ «Москва-Сити» и конечно-элементная модель башни «Эволюция». Для аэродинамического моделирования применена гибридная модель турбулентности SBES, позволяющая разрешать спектр турбулентных пульсаций. Динамический отклик здания вычисляется с использованием прямого динамического конечно-элементного анализа на основе неявного метода Ньюмарка.
Результаты. Результаты аэродинамического моделирования представлены в виде поэтажных распределений аэродинамических сил и моментов для разных направлений ветра. Вычисленный на их основе динамический отклик показал существенное влияние аэродинамической интерференции на поведение здания. Сравнение с расчетами по нормативной методике СП 20.13330.2016 продемонстрировало консервативность последних и необходимость более точных методов расчета.
Выводы. Предложенная методика позволяет более точно прогнозировать динамический отклик высотных зданий при ветровых воздействиях, что имеет важное значение для обеспечения механической безопасности и динамической комфортности. Рекомендуется внедрение данной методики в практику расчетных обоснований высотных зданий, что даст возможность оптимизировать конструктивные решения, повысить механическую безопасность и увеличить экономическую эффективность высотного строительства.
В настоящее время в инженерной практике для оценки совместной динамической работы зданий с грунтовым основанием применяется модель штампа, лежащего на упругом однородном основании. Наличие слоев с резко отличающимися жесткостями, а также порядок их расположения в грунтовой толще приводит к значительным изменениям спектра резонансных частот и величины динамического отклика. Поэтому для корректной оценки резонансных процессов, возникающих при совместных колебаниях сооружения и основания, важно учитывать неоднородность и слоистую структуру грунтового основания. Цель исследования - анализ реакции системы «сооружение - многослойное основание» в зависимости от соотношений их жесткостей, а также в сопоставлении результатов, полученных при моделировании многослойного и эквивалентнго однородного основания.
Материалы и методы. Используется расчетная модель горизонтальной слоистой среды. Рассматривается сооружение как элемент слоистой системы с приведенными жесткостными характеристиками. Сейсмическая нагрузка в виде вертикальной распространяющейся сдвиговой волны моделируется стационарным случайным процессом. Для анализа применяются амплитудно-частотные характеристики системы в целом, а также для каждого отдельного слоя, спектральные плотности выхода и коэффициенты динамичности.
Результаты. Установлено, что при снижении жесткости здания увеличивается его вклад в общую амплитудно-частотную характеристику системы. Выполнена численная оценка изменения коэффициента динамичности при изменении параметров системы. Произведено сопоставление отклика сооружения на многослойном основании с откликом на однородном основании с эквивалентными характеристиками.
Выводы. Упрощенное представление грунта как однородного без учета его слоистой структуры снижает величину коэффициента динамичности до 30 %. Резонансные частоты системы «здание - жесткий слой - слабый слой» в основном определяются резонансными частотами слабого нижнего слоя, особенно при увеличении жесткости зданий. Аналогичная картина характерна и для однородного основания. В системе «здание - слабый слой - жесткий слой» резонансные частоты зависят от частот слоев основания, а также от собственных частот здания.
Введение. Исследуется поведение складчатых элементов из текстильно-армированного бетона при нагружении. Текстильно-армированный бетон - относительно новый строительный материал, привлекающий все больший интерес исследователей. Поскольку плоские конструкции из текстильно-армированного бетона являются тонкими в сечении, они не подходят для покрытия пролетных зданий и сооружений. Однако при этом текстильно-армированный бетон хорошо подходит для изготовления складчатых покрытий, аналогичных покрытиям из армоцемента. Цель исследования - изучение прочностных свойств поперечных сечений складок из текстильно-армированного бетона под нагрузкой.
Материалы и методы. В рамках работы запроектированы, изготовлены и испытаны опытные образцы складок из текстильно-армированного бетона с армированием основовязаными сетками из щелочестойких стеклянных волокон (AR) и углеродных волокон (C). По результатам испытаний проведено сравнение свойств складок в зависимости от их формы (треугольная или трапецеидальная) и типа армирования.
Результаты. Средняя разрушающая нагрузка для треугольных складок составила 5,9 кН для неармированных образцов, 4,8 кН для образцов, армированных AR-ровингами, и 3,6 кН для образцов, армированных C-ровингами. Для трапецеидальных складок средняя разрушающая нагрузка - 8,0 кН для неармированных образцов, 8,7 кН для AR-армирования и 10,7 кН для C-армирования. Средняя прочность мелкозернистого бетона на сжатие - 25,08 МПа. Прочность элементов складок на изгиб - 7,29 МПа для неармированных образцов, 9,33 МПа для AR-армированных образцов и 15,4 МПа для C-армированных образцов.
Выводы. Существующей в настоящее время нормативной базы недостаточно для широкого применения изделий из текстильно-армированного бетона в строительстве. На сегодняшний день имеются разрозненные экспериментальные и теоретические наработки по механическим свойствам материала и поведению конструкций из текстильно-армированного бетона под нагрузкой. Приведены экспериментальные сведения о поведении складчатых элементов из текстильно-армированного бетона под нагружением.
Введение. Актуальность исследования определяется особенностями конструктивных и организационно-технологических решений, формируемых в процессе разработки современных строительных проектов, заключающимися в использовании ограниченного состава технологических ресурсов (строительных материалов, машин и оборудования), обуславливающего дискретность значений характеристик вышеупомянутых решений.
Цель исследования - разработка инструментальных средств для обоснования комбинации стандартных значений характеристик материалов, используемых для устройства слоев ограждающей конструкции, с применением средств квадратичной оптимизации.
Материалы и методы. Разработаны математические модели оптимизации толщин материалов, используемых в качестве слоев ограждающей конструкции в составе жилого здания, базирующиеся на дискретных и бинарных неизвестных переменных, а также на критериях средневзвешенной (по толщине слоев) температуры, общей толщины и сопротивления теплопередаче конструкции. Математические модели имеют квадратичную структуру целевой функции и линейную структуру непрямых ограничений, однако наличие ограничений дискретности (бинарности) неизвестных переменных существенно затрудняет процесс реализации моделей ввиду отсутствия подходящих стандартных (доступных в современных программных средах математического моделирования) вычислительных алгоритмов. В этой связи принято решение разработать пользовательский вычислительный алгоритм, заключающий в себе преимущества метода ветвей и границ, используемого для определения оптимальных значений неизвестных переменных, в отношении которых заданы требования дискретности или бинарности, а также метода внутренней точки, применяемого для установления оптимального решения модели квадратичной оптимизации без учета вышеупомянутых требований.
Результаты. Разработанные математические модели реализованы с использованием предложенного вычислительного алгоритма на практическом примере для решения задачи обоснования комбинации стандартных значений характеристик материалов в отношении рассматриваемой ограждающей конструкции. Полученные результаты позволили сформировать зависимости значений отдельных теплотехнических показателей конструкции от требуемого значения ее толщины.
Выводы. На основе анализа результатов реализации разработанных математических моделей с использованием предложенного вычислительного алгоритма на практическом примере сделан вывод о высокой практической значимости вышеупомянутых инструментальных средств.
Введение. В настоящее время обостряются противоречия между интенсификацией антропогенной деятельности и необходимостью сохранения и укрепления природных комплексов. Стремительный рост городского населения, глобальная проблема изменения климата во всем мире, высокий уровень антропогенного влияния на естественные ландшафты требуют от современных городов внедрения стратегий устойчивого развития территорий в целом и совершенствования приемов по укреплению природно-экологического каркаса (ПЭК), в частности.
Цель исследования - выявление региональных особенностей и проблем формирования ПЭК г. Белгорода и разработка рекомендаций по обеспечению устойчивой высокоурбанизированной среды крупного города. Материалы и методы. Исследование основано на применении экологического и комплексного подхода к проектированию городской среды, аналитический обзор документов территориального планирования и градостроительного зонирования, проблемный анализ текущего состояния ПЭК г. Белгорода, SWOT-анализ природного ресурсного потенциала территории, аналоговое моделирование.
Результаты. Выявлены региональные особенности и проблемы формирования ПЭК Белгорода. Проведен SWOT-анализ природного ресурсного потенциала территории. Определены слабые и сильные стороны, возможности и угрозы. Предложены основные принципы формирования ПЭК г. Белгорода: принцип непрерывности озелененных территорий, децентрализации зеленых зон, оптимальности антропогенной нагрузки, водосберегающего проектирования, интеграции овражно-балочных комплексов в ПЭК, регенерации ландшафтов приречных территорий, рекультивации отработанных карьеров и их интеграции в ПЭК.
Выводы. Обоснована необходимость дополнения материалов генерального плана развития городского округа «город Белгород» до 2025 г. в части разработки схемы ПЭК. Разработана концептуальная пространственная модель с целью укрепления ПЭК г. Белгорода. Для обеспечения комплексной работы по укреплению ПЭК города предложен ряд рекомендаций.
Издательство
- Издательство
- НИУ МГСУ
- Регион
- Россия, Москва
- Почтовый адрес
- 129337, г. Москва, Ярославское шоссе, д. 26
- Юр. адрес
- 129337, г. Москва, Ярославское шоссе, д. 26
- ФИО
- Акимов Павел Алексеевич (РЕКТОР)
- E-mail адрес
- kanz@mgsu.ru
- Контактный телефон
- +7 (495) 7818007
- Сайт
- https://mgsu.ru