Определение границы раздела сред по трёхмерным данным матричного ультразвукового датчика с использованием свёрточных нейронных сетей (2024)
Работа посвящена моделированию процесса ультразвукового медицинского исследования в гетерогенной среде, в которой присутствуют области с существенно разной скоростью звука. Такие постановки задач возникают, например, при визуализации структур мозга через череп. Целью данной работы является сравнение возможных подходов к определению границы раздела акустически контрастных сред с использованием свёрточных нейронных сетей.
В работе выполняется численное моделирование прямой задачи — получение синтети-
ческих расчётных ультразвуковых изображений по известной геометрии и реологии области, а также параметрам датчика. На расчётных изображениях воспроизводятся искажения и артефакты, типичные для постановок со стенкой черепа. Для решения обратной задачи определения границы раздела сред по сигналу с датчика используются свёрточные нейронные сети 2D и 3D структуры, следующие общей архитектуре UNet. Сети обучаются на наборах расчётных данных, после чего тестируются на отдельных примерах, не использованных при обучении.
Идентификаторы и классификаторы
Данная работа рассматривает задачу формирования ультразвукового изображения в гетерогенной среде, в которой присутствуют области с существенно разной скоростью звука. Такая постановка ориентирована на дальнейшее приложение к задачам визуализации структур мозга через кости черепа. Несмотря на многолетнее развитие медицинской техники, конкретно эта задача на данный момент всё ещё является крайне сложной — существующие методики имеют множество ограничений и требуют крайне высокой квалификации специалиста, проводящего исследование.
Список литературы
1. Beklemysheva K.A., Grigoriev G.K., Kulberg N.S., Petrov I.B., Vasyukov A.V., Vassilevski Y.V. Numerical simulation of aberrated medical ultrasound signals. Russian Journal of Numerical Analysis and Mathematical Modelling. 2018;33(5):277-288. https://doi.org/10.1515/rnam-2018-0023
2. Perdios D., Vonlanthen M., Martinez F., Arditi M., Thiran J.P. Single-shot CNN-based ultrasound imaging with sparse linear arrays. In: 2020 IEEE International Ultrasonics Symposium (IUS). Las Vegas, NV, USA; 2020. P. 1‒4. https://doi.org/10.1109/IUS46767.2020.9251442
3. Patel D., Tibrewala R., Vega A., Dong L., Hugenberg N., Oberai A. Circumventing the solution of inverse problems in mechanics through deep learning: Application to elasticity imaging. Computer Methods in Applied Mechanics and Engineering. 2019;353:448-466. https://doi.org/10.1016/j.cma.2019.04.045
4. Hongya Lu, Haifeng Wang, Qianqian Zhang, Sang Won Yoon, Daehan Won. A 3D Convolutional Neural Network for Volumetric Image Semantic Segmentation. Procedia Manufacturing. 2019;39:422-428. https://doi.org/10.1016/j.promfg.2020.01.386
5. Potočnik B., Šavc M. Deeply-Supervised 3D Convolutional Neural Networks for Automated Ovary and Follicle Detection from Ultrasound Volumes. Applied Sciences. 2022;12(3):1246. https://doi.org/10.3390/app12031246
6. Brown K., Dormer J., Fei B., Hoyt K. Deep 3D convolutional neural networks for fast super-resolution ultrasound imaging. Proceedings SPIE 10955, Medical Imaging 2019: Ultrasonic Imaging and Tomography. 2019;10955:1095502. https://doi.org/10.1117/12.2511897
7. Mast T.D., Hinkelman L.M., Metlay L.A., Orr M.J., Waag R.C. Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall. J. Acoust. Soc. Amer. 1999;6:3665-3677. https://doi.org/10.1121/1.428209
8. Madsen E.L., Sathoff H.J., Zagzebski J.A. Ultrasonic shear wave properties of soft tissues and tissuelike materials. J. Acoust. Soc. Am. 1983;74(5):1346-1355. https://doi.org/10.1121/1.390158
9. Vassilevski Y.V., Beklemysheva K.A., Grigoriev G.K., Kulberg N.S., Petrov I.B., Vasyukov A.V. Numerical modelling of medical ultrasound: phantom-based verification. Russian Journal of Numerical Analysis and Mathematical Modelling. 2017;32(5):339-346. https://doi.org/10.1515/rnam-2017-0032
10. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science. 2015;9351:234-241. https://doi.org/10.1007/978-3-319-24574-4_28
11. Paserin O., Mulpuri K., Cooper A., Abugharbieh R., Hodgson A. Improving 3D Ultrasound Scan Adequacy Classification Using a Three-Slice Convolutional Neural Network Architecture. In: CAOS 2018 (EPiC Series in Health Sciences Vol 2). Beijing, China; 2018. P. 152-156. https://doi.org/10.29007/2tct
12. Jiang M., Spence J.D., Chiu B. Segmentation of 3D ultrasound carotid vessel wall using U-Net and segmentation average network. In: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal, QC, Canada; 2020. P. 2043-2046. https://doi.org/10.1109/EMBC44109.2020.9175975
13. Zheng Y., Liu D., Georgescu B., Nguyen H., Comaniciu D. 3D deep learning for efficient and robust landmark detection in volumetric data. Lecture Notes in Computer Science. 2015;9349:565-572. https://doi.org/10.1007/978-3-319-24553-9_69
14. Ghimire K., Chen Q., Feng X. Patch-Based 3D UNet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilated Convolutions. Lecture Notes in Computer Science. 2021;12603:78-84. https://doi.org/10.1007/978-3-030-67194-5_9
15. Coupeau P., Fasquel J.B., Mazerand E., Menei P., Montero-Menei C.N., Dinomais M. Patch-based 3D U-Net and transfer learning for longitudinal piglet brain segmentation on MRI. Computer Methods and Programs in Biomedicine. 2022;214:106563. https://doi.org/10.1016/j.cmpb.2021.106563
Выпуск
Другие статьи выпуска
Многие задачи в математике сводятся к решению дифференциальных уравнений в частных производных для областей сложной формы. Не всегда существующие аналитические и численные методы позволяют эффективно получить решение подобных задач. В последнее время достаточно успешно для решения дифференциальных уравнений в частных производных применяются нейронные сети. При этом обычно рассматриваются краевые задачи для областей, имеющих простую форму. В данной работе предпринимается попытка построить нейронную сеть, способную эффективно решать краевые задачи для областей сложной формы.
В настоящее время активно исследуются частотные режимы работы ускорителей электронов на основе капиллярных разрядов. Электроны в них ускоряются под действием лазерных импульсов фемтосекундного диапазона длительности, пропускаемых через плазму разряда.
В работе рассматриваются результаты трехмерного магнитогидродинамического моделирования цикла капиллярного разряда, включающего стадии заполнения короткого капилляра рабочим газом (водород), формирование плазменного канала, восстановление рабочей среды перед началом следующего разряда. Расчеты выполнены в предположении о том, что система находится под внешним охлаждением, которое обеспечивает температурный баланс на промежуточных этапах рабочего цикла, а также при постоянных условиях подачи и откачки рабочего газа.
Работа посвящена математическому моделированию экстремальных колебаний уровня Азовского моря с использованием данных дистанционного зондирования. Цель исследования заключается в разработке и применении математической модели, которая позволяет более точно прогнозировать сгонно-нагонные явления, вызванные экстремальными ветровыми условиями. Актуальность работы обусловлена необходимостью улучшения прогнозов гидродинамических процессов в мелководных водоемах (таких, как Азовское море), где подобные явления могут иметь значительные экономические и экологические последствия. Цель данной работы — разработка и применение математической модели для прогнозирования экстремальных колебаний уровня Азовского моря, вызванных ветровыми условиями.
Изучение процессов теплообмена и распределения потоков тепла в океанах имеет важное значение для понимания климатических изменений на Земле. Северная Атлантика, являющаяся одним из ключевых компонентов глобальной климатической системы, играет существенную роль в регулировании климата наших широт.
Одним из ключевых инструментов для анализа распределения тепла в океанах является вероятностный анализ. В настоящей работе методами математического моделирования проводится статистический анализ данных наблюдений тепловых потоков в Северной Атлантике.
Представлен новый решатель с адаптивным измельчением сеток SWqgdAMR на базе открытой программной платформы AMReX. Новый решатель основан на регуляризованных уравнениях мелкой воды. В работе описаны уравнения, их дискретизация и особенности реализации в AMReX. Работоспособность SWqgdAMR была показана на двух тестовых задачах: двумерная задача прорыва круговой дамбы (распад столба жидкости) и задача о распаде двух столбов жидкости, разных по высоте.
Издательство
- Издательство
- ДГТУ
- Регион
- Россия, Ростов-на-Дону
- Почтовый адрес
- 344003, ЮФО, Ростовская область, г. Ростов-на-Дону, пл. Гагарина, 1
- Юр. адрес
- 344003, Ростовская обл, г Ростов-на-Дону, пл Гагарина, зд 1
- ФИО
- Месхи Бесарион Чохоевич (РЕКТОР)
- E-mail адрес
- reception@donstu.ru
- Контактный телефон
- +8 (800) 1001930
- Сайт
- https://donstu.ru