1. Qiang Long, Adil Bagirov, Sona Taheri, Nargiz Sultanova, and Xue Wu. Methods and Applications of Clusterwise Linear Regression: A Survey and Comparison // ACM Trans. Knowl. Discov. Data. - 2023. - V. 17. - No. 3. - P. 1-54.
2. Носков С.И., Беляев С.В. Способ кластеризации выборки данных на основе применения критерия согласованности поведения // Информационные технологии и математическое моделирование в управлении сложными системами. - 2024. - № 4. EDN: LZKOSR
Noskov S.I., Belyaev S.V. Method of clustering a data sample based on the application of the behavior consistency criterion // Information technologies and mathematical modeling in the management of complex systems. - 2024. - No. 4. EDN: LZKOSR
3. Демиденко Е.З. Линейная и нелинейная регрессии. - М.: Финансы и статистика, 1981. - 302 с.
Demidenko E.Z. Linear and nonlinear regressions. - Moscow: Finance and statistics, 1981. - 302 p.
4. Kin-nam Lau, Pui-lam Leung, and Ka-kit Tse. A mathematical programming approach to clusterwise regression model and its extensions // European Journal of Operational Research. - 1999. V. 116. - No. 3. - P. 640-652. EDN: ACXNSD
5. Dimitris Bertsimas, and Romy Shioda. Classification and regression via integer optimization // Operations Research. - 2007. - V. 55. - No. 2. - P. 252-271.
6. Real A. Carbonneau, Gilles Caporossi, and Pierre Hansen. Extensions to the repetitive branch and bound algorithm for globally optimal clusterwise regression // Computers & operations research. - 2012. V. 39. - No. 11. - P. 2748-2762.
7. Wayne S. DeSarbo, Richard L. Oliver, and Arvind Rangaswamy. A simulated annealing methodology for clusterwise linear regression // Psychometrika. - 1989. - V. 54. - No. 4. - P. 707-736. EDN: PZBPJO
8. Adil M. Bagirov and Julien Ugon. Nonsmooth DC programming approach to clusterwise linear regression: optimality conditions and algorithms // Optimization Methods and Software. - 2018. - V. 33. - No. 1. - P. 194-219.
9. Michel Wedel and Cor Kistemaker. Consumer benefit segmentation using clusterwise linear regression // International Journal of Research in Marketing. - 1989. - V. 6. - No. 1. - P. 45-59.
10. Jagadeesh P. Ganjigatti, Dilip K. Pratihar, and A. Roy Choudhury. Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process // Journal of materials processing technology - 2007. - V. 189. - No. 1-3. - P. 352-366. EDN: KLVJAX
11. Mukesh Khadka and Alexander Paz.Comprehensive clusterwise linear regression for pavement management systems // Journal of Transportation Engineering, Part B: Pavements. - 2017. - V. 143. - No. 4. - P. 1-13.
12. Adil M. Bagirov, Arshad Mahmood, and Andrew Barton. Prediction of monthly rainfall in Victoria, Australia: clusterwise linear regression approach // Atmospheric Research. - 2017. - V. 188. - P. 20-29.
13. Носков С.И., Хоняков А.А. Программный комплекс построения некоторых типов кусочно-линейных регрессий // Информационные технологии и математическое моделирование в управлении сложными системами. - 2019. - № 3 (4). - С. 47-55. EDN: UTFPOD
Noskov S.I., Khonyakov A.A. Software package for constructing some types of piecewise linear regressions // Information technologies and mathematical modeling in the management of complex systems. - 2019. - No. 3 (4). - P. 47-55. EDN: UTFPOD
14. Носков С.И. Идентификация параметров комбинированной кусочно-линейной регрессионной модели // Вестник Югорского государственного университета. - 2022. - № 4 (67). - С. 115-119. EDN: CQOTJT
Noskov S.I. Identification of parameters of a combined piecewise linear regression model // Bulletin of Yugra State University. - 2022. - No. 4 (67). - P. 115-119. EDN: CQOTJT