1. Buluta I., Ashhab S., Nori F. Natural and artificial atoms for quantum computation // Reports on Progress in Physics. 2011. Vol. 74, number 10. P. 104401. DOI: 10.1088/0034-4885/74/10/104401 EDN: PHMQQN
2. Xiang Z.L., Ashhab S., You J.Y., Nori F. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems // Reviews of Modern Physics. 2013. Vol. 85, issue 2. P. 623-653. DOI: 10.1103/RevModPhys.85.623 EDN: RJQAMF
3. Gu X., Kockum A.F., Miranowicz A., Liu Y.X., Nori F. Microwave photonics with superconducting quantum circuits // Physics Reports. 2017. Vol. 718-719. P. 1-102. DOI: 10.1016/j.physrep.2017.10.002 EDN: TECRZL
4. Arute F. [et al.] Quantum supremacy using a programmable superconducting processor // Nature. 2019. Vol. 574. P. 505-510. DOI: 10.1038/s41586-019-1666-5
5. Ball P. First quantum computer to pack 100-qubits enters crowded race // Nature. 2021. Vol. 599. DOI: 10.1038/d41586-021-03476-5 EDN: YZTJZO
6. Georgescu I.M., Ashhab S., Nori P. Quantum simulation // Reviews of Modern Physics. 2014. Vol. 86, issue 1. P. 153-185. DOI: 10.1103/RevModPhys.86.153 EDN: SQCURV
7. Wendin G. Quantum information processing with super-conducting circuits: a review // Reports on Progress in Physics. 2017. Vol. 80, number 10. P. 1-60. DOI: 10.1088/1361-6633/aa7e1a EDN: UJRABU
8. Peres A. Separability Criterion for Density Matrices // Physical Review Letters. 1996. Vol. 77, issue 8. P. 1413-1415. DOI: 10.1103/PhysRevLett.77.1413
9. Horodecki R., Horodecki M., Horodecki P. Separability of Mixed States: Necessary and Sufficient Condition // Physics Letters A. 1996. Vol. 223, issues 1-2, P. 333-339. DOI: 10.1016/S0375-9601(96)00706-2
10. Wooters W.K. Entanglement of Formation of an Arbitrary State of Two Qubits // Physical Review Letters. 1998. Vol. 80, issue 10. P. 2245-2248. DOI: 10.1103/PhysRevLett.80.2245
11. Kazuyuki F., Kyoko H., Ryosuke K., Tatsuo S., Yukako W. Explicit Form of the Evolution Operator of TAVIS-CUMMINGS Model: Three and Four Atoms Cases // International Journal of Geometric Methods in Modern Physics. 2012. Vol. 01, no. 06. P. 721-730. DOI: 10.1142/S0219887804000344
12. Liu H.P., Cai J.F. Entanglement in Three-Atom Tavis Cummings Model Induced by a Thermal Field // Communications in Theoretical Physics. 2005. Vol. 43, issue 3. P. 427-431.
13. Cirac J.I., Vidal G., Dur W. Three qubits can be entangled in two inequivalent ways // Physical Review A. 2000. Vol. 62, issue 6. P. 062314. DOI: 10.1103/PhysRevA.62.062314
14. Garcia-Alcaine G., Sabin C. A classification of entanglement in three-qubit systems // The European Physical Journal D. 2008. Vol. 48, issue 3. P. 435-442. DOI: 10.1140/epjd/e2008-00112-5 EDN: MBNVLL
15. Youssef M., Metwally N., Obada A.-S.F. Some entanglement features of a three-atom Tavis-Cummings model: a cooperative case // Journal of Physics B: Atomic, Molecular and Optical Physics. 2010. Vol. 43. P. 095501. URL: https://arxiv.org/pdf/0908.4337.pdf. EDN: XWRGAU
16. Han K.H., Kye S.H. The role of phases in detecting three-qubit entanglement // Journal of Mathematical Physics. 2017. Vol. 58, issue 10. P. 102201. DOI: 10.1063/1.5004977
17. Siti Munirah Mohd S.M., Idrus B., Zainuddin H., Mukhtar M. Entanglement Classification for a Three-qubit System using Special Unitary Groups, SU(2) and SU(4) // International Journal of Advanced Computer Science and Applications. 2019. Vol. 10, issue 7. P. 374-379. DOI: 10.14569/IJACSA.2019.0100751 EDN: PLVHOX
18. Aguiar L.S., Munhoz P.P., Vidiella-Barranco A., Roversi J.A. The entanglement of two dipole-dipole coupled atoms in a cavity interacting with a thermal field // Journal of Optics B: Quantum and Semiclassical Optics. 2005. Vol. 39, number 11. P. 2619. DOI: 10.1088/0953-4075/39/11/C01
19. Akbari-Kourbolagh Y. Entanglement criteria for the three-qubit states // International Journal of Quantum Information. 2017. Vol. 15, number 07. P. 1750049. DOI: 10.1142/S0219749917500496
20. Bashkirov E.K., Stupatskaya M.P. The entanglement of two dipole-dipole coupled atoms induced by nondegenerate two-mode thermal noise // Laser Physics. 2009. Vol. 19, issue 3. P. 525-530. DOI: 10.1134/S1054660X09030281 EDN: LLXFEF
21. Valizadeh S., Tavassoly M.K., Yazdanpanah N. Stability of various entanglements in the interaction between two two-level atoms with a quantized field under the influences of several decay sources // Indian Journal of Physics. 2018. Vol. 92, issue 8. P. 955-968. DOI: 10.1007/s12648-018-1173-9 EDN: XOBWAE
22. Zhang G.-f., Chen Z.-y. The entanglement character between atoms in the non-degenerate two photons Tavis-Cummings model // Optics Communications. 2007. Vol. 275, issue 1. P. 274-277. DOI: 10.1016/j.optcom.2007.03.022
23. Багров А.Р., Башкиров Е.К. Динамика теплового перепутывания пар кубитов в трехкубитной модели Тависа-Каммингса // Журнал технической физики. 2024. Т. 94, вып. 3. С. 341-350. DOI: 10.61011/JTF.2024.03.57370.301-23 EDN: BRWACE