1. Landau L.D., Lifshitz E.M. Fluid mechanics. Oxford: Pergamon Press, 1986. 551 p.
2. Friedlander S., Topper L. Turbulence: classic papers on statistical theory. London: Interscience Publishers LTD, 1961. 187 p. URL: vhttps://cfd.spbstu.ru/agarbaruk/doc/1961_Turbulence%20classic%20papers%20on%20statistical %20theory.pdf.
3. Townsend A.A. The Structure of Turbulent Shear Flow. Cambridge: Cambridge University Press, 1976. 416 p. URL: https://books.google.ru/books?id=0wuu9y8vRagC&printsec=frontcover&hl=ru.
4. Tropea C., Yarin A., Foss J. Springer Handbook of Experimental Fluid Mechanics. Berlin: Springer, 2007. 237 p. DOI: 10.1007/978-3-540-30299-5
5. Davidson L. An Introduction to Turbulence Models. Goteborg: Chalmers University of Technology, 2011. 50 p. URL: https://cfd.spbstu.ru/agarbaruk/doc/2011_Davidson_An-introduction-toturbulence-models.pdf.
6. Hirsch C. Numerical Computation of Internal and External Flows. Second edition. Oxford: Elsevier, 2007. 538 p. URL: https://cfd.spbstu.ru/agarbaruk/doc/Hirsch%20C.%20Numerical%20Computation%20of%20Internal%20and%20External%20Flows.Volume1-Fundamentals%20of%20Computational%20Fluid%20 Dynamics(Elsevier,2nd%20edn,2007).pdf. EDN: YGEGZE
7. Meyers J., Geurts B.J., Sagaut P. Quality and Reliability of Large-Eddy Simulations. Berlin; New York: Springer, 2008. 378 p. DOI: 10.1007/978-1-4020-8578-9
8. Frohlich J., von Terzi D. Hybrid LES/RANS methods for the simulation of turbulent flows // Progress in Aerospace Sciences. 2008. Vol. 44, issue 5. P. 349-377. DOI: 10.1016/j.paerosci.2008.05.001 EDN: MLQKRD
9. Schiestel R. Modeling and simulation of turbulent flows. Hoboken: John Wiley and Sons ltd., 2008. 725 p. URL: https://download.e-bookshelf.de/download/0000/5720/27/L-G-0000572027-0002358757.pdf.
10. McComb W.D. Homogeneous, Isotropic Turbulence: Phenomenology, Renormalization and Statistical Closures. Oxford: Oxford University Press, 2014. 408 p. URL: https://readli.net/homogeneous-isotropic-turbulence-phenomenology-renormalization-and-statistical-closures/.
11. Задорожный В.Г. Линейный хаотический резонанс при вихревом движении // Журнал вычислительной математики и математической физики. 2013. Т. 53, № 4. С. 486-502.
12. Колмогоров А.Н. Локальная структура турбулентности в несжимаемой вязкой жидкости при очень больших числах Рейнольдса // Успехи физических наук. 1967. Т. 93, № 3. C. 476-481.
13. Krasnoselskii M.A., Pokrovskii A.V. Systems with hysteresis. Berlin: Springer-Verlag, 1989. 410 p. DOI: 10.1007/978-3-642-61302-9
14. Visintin A. Differential models of hysteresis. New York: Springer-Verlag, 1994. 409 p. DOI: 10.1007/978-3-662-11557-2
15. Antonelli M., Carboni B., Lacarbonara W., Bernardini D., Kalmar-Nagy T. Quantifying ratedependence of a nonlinear hysteretic device // Nonlinear Dynamics of Structures, Systems and Devices. 2020. Vol. 1. P. 347-355. DOI: 10.1007/978-3-030-34713-0_35
16. Carboni B., Lacarbonara W., Brewick P., Masri S. Dynamical response identification of a class of nonlinear hysteretic systems // Journal of Intelligent Material Systems and Structures. 2018. Vol. 29, issue 13. P. 2795-2810. DOI: 10.1177/1045389X18778792
17. Mayergoyz I.D. Mathematical Models of Hysteresis. New York: Spinger-Verlag, 1991. 207 p. DOI: 10.1007/978-1-4612-3028-1
18. Weiss P., Freundereich J.D. Etude de l’aimantation initiale enfunction de la temperature // Archives des Sciences Physiques et Naturelles. 1916. Vol. 42. P. 449-470.
19. Preisach F. Uber die magnetische nachwirkung // Zeitschrift fur Physik. 1935. Vol. 94. P. 277-302. DOI: 10.1007/BF01349418
20. Semenov M.E., Borzunov S.V., Meleshenko P.A. Stochastic Preisach operator: definition within the design approach // Nonlinear Dynamics. 2020. Vol. 101, № 11. P. 2599-2614. DOI: 10.1007/s11071-020-05907-w EDN: ZRYWAL
21. Borzunov S.V., Semenov M.E., Sel’vesyuk N.I., Meleshenko P.A., Solovyov A.M. Stochastic model of a hysteresis converter with a domain structure // Mathematical Models and Computer Simulations. 2022. Vol. 14, № 2. P. 305-321. DOI: 10.1134/S207004822202003X EDN: YNEFXA
22. Semenov M.E., Borzunov S.V., Meleshenko P.A. A New Way to Compute the Lyapunov Characteristic Exponents for Non-Smooth and Discontinues Dynamical Systems // Nonlinear Dynamics. 2022. Vol. 109, № 3. P. 1805-1821. DOI: 10.21203/rs.3.rs-1202895/v1 EDN: XFYIDK
23. Lacarbonara W. Vestroni F. Nonclassical responses of oscillators with hysteresis // Nonlinear Dynamics. 2003. Vol. 32. P. 235-258. :1024423626386. DOI: 10.1023/A EDN: EQPZVV
24. Charalampakis A.E. The response and dissipated energy of Bouc-Wen hysteretic model revisited // Archive of Applied Mechanics. 2015. Vol. 85. P. 1209-1223. DOI: 10.1007/s00419-014-0937-8 EDN: ZYLLLF
25. Ikhouane F., Rodellar J. On the Hysteretic Bouc-Wen Model // Nonlinear Dynamics. 2005. Vol. 42. P. 63-78. DOI: 10.1007/s11071-005-0069-3 EDN: IRSZYO
26. Iwan W.D. A distributed-element model for hysteresis and its steady-state dynamic response // Journal of Applied Mechanics. 1966. Vol. 33, no. 4. P. 893-900. DOI: 10.1115/1.3625199
27. Lin C.-J., Lin P.-T. Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model // Computers and Mathematics with Applications. 2012. Vol. 64, issue 5. P. 766-787. DOI: 10.1016/j.camwa.2011.12.015
28. Flynn D., Zhezherun A., Pokrovskii A., O’Kane J.P. Modeling discontinuous flow through porous media using ODEs with Preisach operator // Physica B: Condensed Matter. 2008. Vol. 403, issues 2-3. P. 440-442. DOI: 10.1016/j.physb.2007.08.070 EDN: KLCQQJ
29. Khatuntseva O.N. Analysis of the reasons for an aerodynamic hysteresis in flight tests of the Soyuz reentry capsule at the hypersonic segment of its descent // Journal of Applied Mechanics and Technical Physics. 2011. Vol. 52. P. 544-552. DOI: 10.1134/S0021894411040067 EDN: PDZOJN
30. Bak B.D., Kalmar-Nagu T. Energy cascade in a nonlinear mechanistic model of turbulence // Technische Mechanik. 2019. Vol. 39, no. 1. P. 64-71. DOI: 10.24352/UB.OVGU-2019-007 EDN: JKCCVF
31. Vakakis A.F., Gendelman O.V., Bergman L.A., McFarland D.M., Kerschen G., Lee Y.S. Nonlinear targeted energy transfer in mechanical and structural systems. Berlin: Springer, 2009. 1033 p. DOI: 10.1007/978-1-4020-9130-8
32. Vakakis A.F., Gendelman O. Energy pumping in nonlinear mechanical oscillators: part IIresonance capture // Journal of Applied Mechanics. 2001. Vol. 68, no. 1. P. 42-48. DOI: 10.1115/1.1345525 EDN: LGNZXV
33. Semenov M.E., Reshetova O.O., Solovyov A.M., Tolkachev A.V., Meleshenko P.A. Oscillations under hysteretic conditions: from simple oscillator to discrete sine-Gordon model // Springer Proceedings in Physics. 4th. “Topics in Nonlinear Mechanics and Physics - Selected Papers from CSNDD 2018”. 2019. P. 229-253. DOI: 10.1007/978-981-13-9463-8_12 EDN: GKURSI
34. Meleshenko P.A., Nesterov V.A., Semenov M.E., Solovyov A.M., Sypalo K.I. Stabilization of a system of unstable pendulums: discrete and continuous case // Journal of Computer and Systems Sciences International. 2022. Vol. 61, no. 1. P. 135-154. DOI: 10.1134/S1064230722020113 EDN: GWPIQB
35. Chen J.E., Theurich T., Krack M., Sapsis T., Bergman L.A., Vakakis A.F. Intense crossscale energy cascades resembling “mechanical turbulence” in harmonically driven strongly nonlinear hierarchical chains of oscillators // Acta Mechanica. 2022. Vol. 233. P. 1289-1305. DOI: 10.1007/s00707-022-03159-w EDN: VLXLJI
36. Chen J.E., Sun M., Zhang W., Li S.B., Wu R.Q. Cross-scale energy transfer of chaotic oscillator chain in stiffness-dominated range // Nonlinear Dynamics. 2022. Vol. 110. P. 2849-2867. DOI: 10.1007/s11071-022-07737-4 EDN: CMXYDI
37. Rosenstein M.T., Collins J.J., De Luca C.J. A practical method for calculating largest Lyapunov exponents from small data sets // Physica D: Nonlinear Phenomena. 1993. Vol. 65. P. 117-134. DOI: 10.1016/0167-2789(93)90009-P
38. Medvedsky A.L., Meleshenko P.A., Nesterov V.A., Reshetova O.O., Semenov M.E. Dynamics of hysteretic-related Van-Der-Pol oscillators: the small parameter method // Journal of Computer and Systems Sciences International. 2021. Vol. 60, no. 4. P. 511-529. DOI: 10.1134/S1064230721040092 EDN: CSCIFJ