Обоснование. Работа направлена на развитие и исследование строгих методов решения внутренней задачи электродинамики для многоэлементных структур (метаструктур), состоящих из конечного числа элементов, а также на исследование протекающих в них физических процессов. Частным случаем подобных структур являются двумерные решетки с фиксированным межэлементным расстоянием, состоящие из одинаковых элементов, имеющих одну и ту же пространственную ориентацию (регулярные решетки).
Цель. На основе итерационного подхода осуществляется решение внутренней задачи электродинамики для конечной регулярной двумерной решетки спиральных элементов. С целью получения априорной информации об электродинамических характеристиках элементов решетки и обоснования выбора систем проекционных функций осуществляется анализ спектральных характеристик интегрального оператора внутренней задачи для одиночного спирального элемента. Затем производится расчет токов на элементах структуры, определяются их спектральные характеристики. Результаты спектрального анализа позволяют повысить эффективность решения внутренней задачи.
Методы. В основе исследований лежит строгий электродинамический подход, в рамках которого для указанной структуры в тонкопроволочном приближении формируется интегральное представление электромагнитного поля, сводящееся при рассмотрении на поверхности проводников совместно с граничными условиями к системе интегральных уравнений Фредгольма второго рода, записанных относительно неизвестных распределений тока на проводниках (внутренняя задача). Решение внутренней задачи в рамках метода моментов сводится к решению СЛАУ с блочной матрицей.
Результаты. Предложена математическая модель конечной двумерной решетки спиральных элементов излучающей структуры. Для указанной структуры в случае ее возбуждения плоской электромагнитной волной на основе итерационного подхода решена внутренняя задача электродинамики. В широкой полосе частот проведены: анализ сходимости итерационного процесса, спектральный анализ интегрального оператора внутренней задачи для одиночного спирального элемента, а также спектральный анализ функций стороннего поля и токовых функций на элементах решетки.
Заключение. Показана целесообразность определения спектральных характеристик интегральных операторов внутренней задачи для элементов, образующих метаструктуру. Выявлена связь между частотной зависимостью собственных чисел интегрального оператора внутренней задачи одиночных элементов, образующих метаструктуру, с резонансными явлениями, возникающими в метаструктуре, подтверждено влияние резонансов на сходимость итерационного процесса. Показана целесообразность рассмотрения усредненных амплитудных токовых спектров. Выявлено, что усредненный спектр токовых функций близок к вырожденному, особенно вблизи резонансных частот. Это позволяет использовать в качестве проекционных функций компактный набор собственных функций, имеющих существенные амплитуды в окрестности исследуемой частоты, что существенно упрощает решение внутренней задачи.
Background. The work is aimed at developing and researching rigorous methods for solving internal problem of electrodynamics for multi-element structures (metastructures) consisting from the final number of elements, as well as to study the physical processes occurring in them. A special case of such structures are two-dimensional lattices with a fixed interelement distance, consisting of identical elements having the same spatial orientation (regular lattices).
Aim. In this work, based on an iterative approach, the internal solution is solved. problems of electrodynamics for a finite regular two-dimensional lattice of spiral elements. In order to obtain a priori information about the electrodynamic characteristics of elements lattice and justification for the choice of projection function systems are analyzed spectral characteristics of the integral operator of the internal problem for a single spiral element. Then the currents on the structure elements are calculated, their spectral characteristics are determined. The results of spectral analysis allow increase the efficiency of solving an internal problem.
Methods. The research is based on a strict electrodynamic approach, within the framework of which, for the specified structure in the thin-wire approximation, an integral representation of the electromagnetic field is formed, which, when considered on the surface of conductors together with boundary conditions, is reduced to a system of Fredholm integral equations of the second kind, written relative to unknown current distributions on conductors (internal task). The solution of the internal problem within the framework of the method of moments is reduced to solving a SLAE with a block matrix.
Results. A mathematical model of a finite two-dimensional lattice of spiral elements is proposed radiating structure. For the specified structure, in the case of its excitation by a flat electromagnetic wave, based on the iterative approach, the internal problem of electrodynamics was solved. The following were carried out in a wide frequency range: analysis of the convergence of the iterative process, spectral analysis of the integral operator of the internal problem for a single spiral element, as well as spectral analysis of external field and current functions functions on lattice elements.
Conclusion. The feasibility of determining the spectral characteristics of integral operators is shown internal task for the elements forming the metastructure. A relationship has been identified between the frequency dependence eigenvalues of the integral operator of the internal problem of single elements, forming a metastructure, with resonance phenomena arising in the metastructure, the influence of resonances on the convergence of the iterative process was confirmed. The feasibility of considering averaged amplitude current spectra is shown. It was revealed that the averaged spectrum of current functions is close to degenerate, especially near resonant frequencies. This allows for use as projection functions a compact set of eigenfunctions that have significant amplitudes in the vicinity of the frequency under study, which significantly simplifies the solution of the internal problem.
Идентификаторы и классификаторы
- Префикс DOI
- 10.18469/1810-3189.2024.27.3.17-33
- eLIBRARY ID
- 71299781