Разработка системы мониторинга и анализа инвестиционной привлекательности субъекта РФ на основе Big Data (2024)

В настоящем исследовании рассматривается проблема разработки системы мониторинга и анализа инвестиционной привлекательности субъекта Российской Федерации на основе технологий Big Data. Актуальность данной темы обусловлена необходимостью привлечения инвестиций в экономику регионов и повышения их конкурентоспособности в условиях глобализации и цифровизации. Цель исследования заключается в создании эффективной системы мониторинга и анализа инвестиционной привлекательности субъекта РФ, способной обрабатывать и анализировать огромные массивы структурированных и неструктурированных данных из различных источников, таких как государственные информационные системы, социальные сети, новостные порталы, данные геолокации и др. В работе применяются методы интеллектуального анализа данных (data mining), машинного обучения, статистического анализа, а также технологии распределенной обработки данных (Hadoop, Spark). Предложена архитектура системы, включающая модули сбора, предобработки, хранения, анализа данных и визуализации результатов. Разработана методика оценки инвестиционной привлекательности региона на основе комплексного анализа более 150 показателей, характеризующих экономический потенциал, инфраструктуру, человеческий капитал, инновационную активность и инвестиционный климат субъекта РФ. С помощью методов машинного обучения (Random Forest, Gradient Boosting) построены прогнозные модели, позволяющие оценивать инвестиционную привлекательность региона на краткосрочную и долгосрочную перспективу. Апробация разработанной системы проведена на примере Новосибирской области. Результаты анализа показали, что Новосибирская область входит в топ-15 регионов РФ по уровню инвестиционной привлекательности, однако имеет ряд проблемных зон, в частности, недостаточно развитую транспортно-логистическую инфраструктуру и дефицит высококвалифицированных кадров в сфере IT. На основе полученных результатов даны рекомендации по повышению инвестиционной привлекательности региона. Разработанная система мониторинга и анализа на основе технологий Big Data может быть масштабирована и адаптирована для других субъектов РФ, что будет способствовать повышению эффективности управленческих решений в сфере инвестиционной политики и экономического развития регионов.

Тип: Статья
Автор (ы): Зареченский Никита Сергеевич
Ключевые фразы: Ключевые слова Big Data, ИНВЕСТИЦИОННАЯ ПРИВЛЕКАТЕЛЬНОСТЬ, СУБЪЕКТ РФ, ИНТЕЛЛЕКТУАЛЬНЫЙ АНАЛИЗ ДАННЫХ, машинное обучение, РАСПРЕДЕЛЕННАЯ ОБРАБОТКА ДАННЫХ, Hadoop, Spark

Идентификаторы и классификаторы

УДК
004.6. Данные
330.322. Инвестиции. Образование капитала
Текстовый фрагмент статьи