Архив статей журнала

Разработка и апробация интеллектуальных систем управления для повышения производительности технологических процессов (2024)
Выпуск: № 2, Том 68 (2024)
Авторы: Добриневский Артем Викторович

В современных условиях динамично развивающегося производства и нарастающей конкуренции на рынке актуальной задачей является разработка эффективных моделей прогнозирования и управления для автоматизированных производственных систем (АПС). Данное исследование направлено на создание комплексного подхода к моделированию и оптимизации функционирования АПС с целью повышения эффективности производственных процессов, снижения затрат и обеспечения высокого качества выпускаемой продукции. Для достижения поставленных целей были применены методы математического моделирования, теории управления, оптимизации и интеллектуального анализа данных. В частности, были разработаны стохастические модели прогнозирования спроса на продукцию, учитывающие сезонные колебания и тренды рынка. Такие модели позволяют с точностью до 95% предсказывать объемы продаж на период от 1 до 6 месяцев. Для управления производственными процессами были предложены адаптивные алгоритмы планирования и диспетчеризации, основанные на методах нечеткой логики и генетических алгоритмах. Использование данных подходов позволило сократить время переналадки оборудования на 20-25% и снизить объемы незавершенного производства на 15%. Проведенные экспериментальные исследования на примере реального машиностроительного предприятия подтвердили эффективность разработанных моделей и алгоритмов. Внедрение предложенных решений позволило увеличить производительность АПС на 12%, сократить затраты на сырье и материалы на 8% и повысить качество выпускаемой продукции, снизив процент брака с 1,5%до 0,8%. Полученные результаты имеют высокую практическую значимость и могут быть использованы для повышения конкурентоспособности и эффективности функционирования предприятий различных отраслей промышленности. Дальнейшие исследования будут направлены на развитие предложенных подходов и их адаптацию для решения новых задач в условиях цифровизации производства и перехода к концепции «Индустрия 4.0».

Сохранить в закладках