Исследование предлагает новую методологическую основу для анализа ключевых социально-психологических процессов - внутригруппового сплочения и аффективной поляризации - в цифровых медиа в периоды кризисов. На примере эмоциональной динамики в русскоязычных Telegram-каналах (2.5 тыс. каналов, 1.2 млн сообщений) за месяц до и после начала Специальной военной операции (СВО) демонстрируется асимметричная трансформация: усиление позитивной консолидации внутри идеологически близких сообществ на фоне роста межгрупповой поляризации, особенно во внешних связях. Используя методы машинного обучения, обработки текстовых данных и сетевого анализа, работа не только фиксирует специфику реакции на конкретное событие - триггер, но и вносит вклад в теорию социальной идентичности, подчеркивая фундаментальную роль эмоциональных границ в формировании цифровых сообществ, что сохраняет актуальность для понимания динамики социальных сетей в условиях современных конфликтов и расколов.
Исследование сосредоточено на применении современных методов машинного обучения для анализа текстовых данных в контексте динамики идеологической поляризации в русскоязычных политических Telegramканалах в первой половине 2022 г. В работе предлагается подход к классификации текстовых сообщений по идеологической направленности – консервативной, либеральной и коммунистической, который позволит экономно использовать ресурсы исследователей.
На основе разработанного подхода был создан классификатор идеологической направленности на основе ChatGPT, который показал высокий уровень согласованности в ответах между человеком и большой языковой моделью при оценке идеологической направленности текста. Это свидетельствует о том, что предложенный подход позволяет уменьшить затраты ресурсов при проведении анализа текстовых данных.
На следующем этапе была проанализирована выборка из 559 популярных политических Telegram-каналов, в которых было опубликовано 50 тыс. сообщений на предмет динамики идеологической поляризации после начала специальной военной операции. Сравнивалось нескольких моделей: изменения распределения мнений, состава групп и изменения пропорциональности идеологических текстов внутри каналов. Был сделан вывод, что после начала специальной военной операции произошло изменение идеологической поляризации, которое проявилось в изменении конфигурации полюсов за счет усиления консервативных взглядов. При этом коммунистические взгляды практически не присутствуют в популярном Telegram-пространстве.
Работа не только фиксирует динамику идеологической поляризации, но и предлагает метод анализа сложных социально-политических процессов в русскоязычной онлайн-среде с использованием больших языковых моделей. Этот метод подходит как для изучения поляризации, так и для анализа других процессов на основе текстовых данных. Он значительно сокращает затраты на исследования, требующие большого числа экспертных оценок.