Рассматривается развитие теории робастного оценивания параметров статистических моделей с привлечением аппарата теории информации. Анализируется подход А. М. Шурыгина, основанный на модели серии выборок со случайным точечным засорением (модели байесовского точечного засорения). В первой части нашей работы описан непараметрический способ выбора распределения засоряющей точки - посредством максимизации энтропии Шеннона или перекрестной энтропии в окрестности модельного распределения, ограниченной величиной дивергенции Кульбака - Лейблера. Такой способ нахождения плотности распределения засоряющей точки позволяет рассматривать получаемые оценки как робастные, причем обладающие свойством оптимальности. Полученные оценки мы называем обобщенными радикальными, поскольку их частным случаем являются радикальные оценки А. М. Шурыгина. Во второй части работы получено другое оптимальное решение на основе формализма А. Реньи (или эквивалентного с точки зрения нашей задачи формализма К. Цаллиса), дающее новое семейство оценок, частными случаями которого также являются некоторые известные оценки. Для выбора одной оценки из семейства, определяемого разными ограничениями на дивергенцию, предложен оптимизационный подход. Основные теоретические результаты, полученные в работе, иллюстрируются на примере оценивания параметра сдвига косинусного распределения.
Развивается теория робастного оценивания параметров статистических моделей с привлечением аппарата теории информации. Рассмотрен подход А. М. Шурыгина, основанный на модели серии выборок со случайным точечным засорением (модели байесовского точечного засорения). Из предложенных А. М. Шурыгиным оценок, пожалуй, наиболее интересными свойствами обладают стойкие оценки. Хотя данный подход можно связать с подходом Ф. Хампеля к робастному оцениванию, необходимость при нахождении стойких оценок постулировать параметрический вид распределения засоряющей точки не позволяет считать это робастной процедурой. В первой части нашей работы предложен непараметрический способ выбора указанного распределения - посредством максимизации энтропии Шеннона в окрестности модельного распределения, ограниченной величиной дивергенции Кульбака - Лейблера. Такой способ нахождения плотности распределения засоряющей точки позволяет рассматривать получаемые оценки как робастные, причем обладающие свойством оптимальности. Полученные оценки мы называем обобщенными радикальными, поскольку их частным случаем являются радикальные оценки А. М. Шурыгина. Обобщенные радикальные оценки широко известны в зарубежных публикациях как оценки минимума логарифмической дивергенции степени плотности (гамма-дивергенции), при этом вопрос их оптимальности там не исследуется. К обобщенным радикальным относятся некоторые популярные оценки параметра сдвига: оценки Мешалкина (Уэлша), Эндрюса, Смита, Бернулли, бивес-оценка Тьюки, оценка Хьюбера типа урезанного среднего, обобщенные оценки Шарбонье. Также в первой части работы предложено использовать функционал перекрестной энтропии. Перекрестная энтропия, применяемая в качестве оптимизируемого функционала вместо энтропии Шеннона, позволяет получить семейство оценок с наиболее широким диапазоном значений параметра, задающего это семейство. К задаче максимизации перекрестной энтропии сводится задача максимизации математического ожидания функции потерь оценок максимального правдоподобия в модели байесовского точечного засорения. По этой причине обобщенные радикальные оценки могут интерпретироваться как защищенные от намеренного искажения оценок максимального правдоподобия. Во второй части работы получено другое оптимальное решение на основе формализма А. Реньи (или эквивалентного с точки зрения нашей задачи формализма К. Цаллиса), дающее новое семейство оценок, частными случаями которого также являются некоторые известные оценки. Для выбора одной оценки из семейства, определяемого разными ограничениями на дивергенцию, предложен оптимизационный подход, аналогичный таковому, приводящему к стойким оценкам, но, в отличие от последнего, остающийся непараметрическим. Основные теоретические результаты, полученные в работе, иллюстрируются во второй ее части на примере оценивания параметра сдвига косинусного распределения.
В работе развивается теория устойчивых M-оценок, относящихся к классу сниженных оценок, обладающих свойством устойчивости к асимметричному засорению.
Многие известные сниженные оценки могут быть получены в рамках двух подходов д.т.н. А.М. Шурыгина: локально устойчивого подхода, основанного на анализе показателя неустойчивости оценки (L2-нормы функции влияния), или подхода, основанного на модели
серии выборок со случайным точечным засорением (модели байесовского точечного засорения).
Эти подходы удобны для построения различных устойчивых М-оценок и, по сравнению с классическими робастными процедурами, предоставляют более широкие возможности.
Предложенное А.М. Шурыгиным в рамках первого из перечисленных подходов семейство условно оптимальных оценок может определяться как оптимизирующее асимптотическую дисперсию при ограничении на величину неустойчивости.
Соответствующая задача допускает представление в форме оптимизации весовой L2-нормы функции влияния.
Во втором подходе рассматривается специальным образом сформированная непараметрическая окрестность модельного распределения, и он тоже может быть сведен к анализу весовой L2-нормы функции влияния.
Таким образом, данный критерий качества оценивания является достаточно общим и полезным для конструирования робастных оценок.
Метод:
Теория оценок, оптимальных с точки зрения весовой L2-нормы функции влияния, в настоящее время недостаточно развита.
Так, для соответствующих семейств оценок остается нерешенным вопрос единственности членов семейства.
Вопрос сводится к исследованию выпуклости (вогнутости) оптимизируемого функционала в зависимости от параметра, задающего семейство.
Основные результаты:
В работе в общем виде получено выражение для производной по параметру функционала качества оптимальной оценки.
Получены неравенства для второй производной, необходимые для установления его выпуклости (вогнутости) по параметру.
Полученные результаты применены для описания свойств условно оптимального семейства.
Построены фу