Работы автора

ACOUSTICAL LOW-FREQUENCY IMPACTS INSIDE NATURAL CLOUDS TO GET PRECIPITATION ENHANCEMENT (2021)

This paper analyzes artificial acoustical impact inside natural clouds, in particular inside the non-precipitated stratiform clouds, non-precipitating shallow cumulus clouds, and Cu-clouds with drizzle. Optimal power and frequency for acoustical impact were indicated based on properties of natural cloud, such as liquid water content, droplet concentrations, and the average diameter size of a droplet ensemble followed by lognormal or gamma size distributions in the presented consideration. The model is constructed to ensure collisions of neighboring droplets when they vibrate in acoustical field to merge with mass unification, but the process is designed with a minimum required level of acoustic power for comfort realization in practice. Vibration model of suspended droplets with typical size in cloud is analyzed. The optimized acoustic power is near 130 dB, and frequency f  50 – 100 Hz, and detailed characteristics are indicated for each cloud type depending on their parameters. Simple formulas and typical calculations for droplet amplitude are presented in terms of parameters of acoustical field as well as cloud characteristics. The first low-frequency acoustic experiments for clouds are performed and presented. The low-frequency method has shown a promising potential to be used for precipitation enhancement to tackle water shortage problem in the modern world.

Издание: The complex systems
Выпуск: №3 (13) (2021)
Автор(ы): Jiahua Wei
Сохранить в закладках