Актуальность. Необходимость эффективного управления здравоохранением требует совершенствования медицинской статистики. Текущие методы сбора данных ограничены и неточны. Стратегия цифровой трансформации до 2030 года нацелена на создание безопасной и надежной информационной инфраструктуры здравоохранения с использованием отечественных технологий.
Цель исследования: провести анализ существующих методов сбора и анализа медицинской статистики в различных странах.
Материалы и методы. Для получения информации выполнен поиск релевантных исследований, опубликованных в электронных базах eLibrary, Refseek, Virtual Learning Resources Center, Yandex и Googlе. Стратегию поиска составляли такие ключевые слова и словосочетания на русском и английском языках, как «статистика», «сбор», «анализ».
Результаты. Исследование выявило ключевые методы развития сбора медицинской статистики в России и мире, фокусируясь на точности и полноте данных. Анализировались принципы конфиденциальности, охвата, качества, вычислимости, регулярности и репрезентативности, а также методы сбора: опросы, непрерывный сбор данных и автоматизированная передача информации.
Выводы. Уникальность российской системы статистического учета в здравоохранении заключается в сплошной регистрации каждого случая заболевания в медицинских организациях. Внедрение современных цифровых решений, основанных на первичных данных, соответствует основным принципам статистики. Это позволит упростить работу с информацией, повысить ее точность и доступность для оперативного реагирования на изменения в сфере здравоохранения.
В условиях цифровизации здравоохранения принципиально важное значение приобретает создание современных информационных систем для сбора и обработки медицинской статистики. Данная статья представляет разработку и всесторонний анализ функциональных требований к таким системам, рассматривая их как сложные технологические комплексы, объединяющие строгие нормативные требования, передовые цифровые решения и практические потребности медицинских организаций. Особое внимание уделено методологии обеспечения качества данных, принципам интеграции с существующей ИТ-инфраструктурой и созданию условий для аналитической работы на основе собранной статистики.