EISSN 1726-3522
Язык: ru

Архив статей журнала

ОБ ОЦЕНКЕ ПОГРЕШНОСТИ ПРИБЛИЖЕННОГО РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ОПРЕДЕЛЕННОГО С ПОМОЩЬЮ РЯДОВ ЧЕБЫШЁВА (2020)
Выпуск: Т. 21 № 3 (2020)
Авторы: Арушанян Олег Багратович, Залеткин Сергей Федорович

Рассматривается приближенный метод решения задачи Коши для нелинейных обыкновенных дифференциальных уравнений первого порядка, основанный на применении смещенных рядов Чебышёва и квадратурной формулы Маркова. Приведены способы оценки погрешности приближенного решения, выраженного в виде частичной суммы ряда некоторого порядка. Погрешность оценивается с помощью второго приближенного решения, вычисленного специальным образом и представленного частичной суммой ряда более высокого порядка. На основе предложенных способов оценки погрешности построен алгоритм автоматического разбиения промежутка интегрирования на элементарные сегменты, делающие возможным вычисление приближенного решения с наперед заданной точностью. Работа метода проиллюстрирована примерами, в том числе примером из небесной механики.

Сохранить в закладках
ЭФФЕКТИВНАЯ ПРОГРАММНАЯ РЕАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ РЕШЕНИЯ ЖЕСТКИХ СИСТЕМ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ (2020)
Выпуск: Т. 21 № 1 (2020)
Авторы: Желтков Дмитрий Александрович, Желткова Валерия Валерьевна, Третьякова Руфина Максимовна, Бочаров Геннадий Алексеевич

Системы уравнений с запаздываниями широко применяются в различных областях современного математического моделирования. В ходе разработки структуры математической модели и идентификации ее параметров приходится многократно решать задачу Коши для подобных систем. В случае высокой размерности системы, а также при условии жесткости задачи численное решение уравнений с запаздываниями может требовать значительных вычислительных и временных затрат. Таким образом, разработка и реализация эффективных алгоритмов численного решения различных классов уравнений с запаздывающими аргументами является актуальной задачей. В настоящей статье представлена модифицированная версия программного комплекса DIFSUBDEL, в которой реализованы методы численного решения дифференциальных уравнений с запаздываниями на основе линейных многошаговых методов. Переработанная версия разработана с применением принципов структурного программирования и является значительно более удобной в эксплуатации, чем исходная, а также обладает свойством потокобезопасности, что позволяет использовать комплекс в качестве блока в системах, основанных на технологиях параллельного программирования с общей памятью. Был проведен сравнительный анализ производительности переработанной системы DIFSUBDEL c другими существующими программными реализациями численных методов решения дифференциальных уравнений с запаздыванием и показана ее эффективность.

Сохранить в закладках