Исследование предлагает новую методологическую основу для анализа ключевых социально-психологических процессов - внутригруппового сплочения и аффективной поляризации - в цифровых медиа в периоды кризисов. На примере эмоциональной динамики в русскоязычных Telegram-каналах (2.5 тыс. каналов, 1.2 млн сообщений) за месяц до и после начала Специальной военной операции (СВО) демонстрируется асимметричная трансформация: усиление позитивной консолидации внутри идеологически близких сообществ на фоне роста межгрупповой поляризации, особенно во внешних связях. Используя методы машинного обучения, обработки текстовых данных и сетевого анализа, работа не только фиксирует специфику реакции на конкретное событие - триггер, но и вносит вклад в теорию социальной идентичности, подчеркивая фундаментальную роль эмоциональных границ в формировании цифровых сообществ, что сохраняет актуальность для понимания динамики социальных сетей в условиях современных конфликтов и расколов.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.