Архив статей журнала

УСТОЙЧИВОСТЬ РЕШЕНИЙ СИСТЕМ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С БЕСКОНЕЧНЫМ РАСПРЕДЕЛЁННЫМ ЗАПАЗДЫВАНИЕМ (2023)
Выпуск: Т. 8 № 4 (2023)
Авторы: Искаков Тимур Кайратович

Рассматривается некоторый класс систем нелинейных дифференциальных уравнений с бесконечным распределённым запаздыванием. Предполагается, что коэффициенты в линейных членах являются T -периодическими, нелинейное слагаемое является непрерывной, липшицевой по части переменных вектор-функцией и имеет порядок малости больше единицы. Такие системы дифференциальных уравнений возникают при моделировании различных процессов, возникающих в биологии, химии, физике, экономике. В работе предложен функционал Ляпунова - Красовского, на основе которого установлены достаточные условия экспоненциальной устойчивости нулевого решения рассматриваемого класса систем, указаны оценки на множество притяжения нулевого решения и оценки на норму решения начальной задачи, характеризующие экспоненциальное убывание на бесконечности. Все параметры, участвующие в оценках, указаны в явном виде. Установленные в работе условия экспоненциальной устойчивости нулевого решения выражены в терминах интегрального неравенства. Также получены условия глобальной экспоненциальной устойчивости нулевого решения.

Сохранить в закладках
ГЛОБАЛЬНАЯ УСТОЙЧИВОСТЬ И ОЦЕНКИ РЕШЕНИЙ В ОДНОЙ МОДЕЛИ ДИНАМИКИ ПОПУЛЯЦИИ С ЗАПАЗДЫВАНИЕМ (2024)
Выпуск: Т. 9 № 4 (2024)
Авторы: Скворцова Мария Александровна

Рассматривается модель динамики изолированной популяции, описываемая дифференциальным уравнением с запаздывающим аргументом. Изучается случай, когда в модели имеется не более двух положений равновесия, соответствующих полному вымиранию популяции и постоянной положительной численности популяции. Указаны условия на правую часть уравнения, при которых происходит стабилизация решений к положениям равновесия при произвольных неотрицательных начальных данных. Получены оценки скорости стабилизации в зависимости от коэффициентов уравнения, нелинейной функции, входящей в правую часть уравнения, и функции, заданной на начальном промежутке времени. Установленные оценки характеризуют скорость вымирания популяции и скорость стабилизации численности популяции к постоянной величине. Результаты получены с использованием функционалов Ляпунова - Красовского.

Сохранить в закладках
УСТОЙЧИВОСТЬ РЕШЕНИЙ СИСТЕМ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ НЕЙТРАЛЬНОГО ТИПА С БЕСКОНЕЧНЫМ РАСПРЕДЕЛЁННЫМ ЗАПАЗДЫВАНИЕМ (2024)
Выпуск: Т. 9 № 4 (2024)
Авторы: Искаков Тимур Кайратович

Рассматривается класс систем линейных неавтономных интегро-дифференциальных уравнений нейтрального типа с бесконечным распределённым запаздыванием и периодическими коэффициентами. С использованием метода функционалов Ляпунова - Красовского получены достаточные условия экспоненциальной устойчивости нулевого решения, указаны условия на возмущения коэффициентов, при которых сохраняется экспоненциальная устойчивость, установлены оценки решений на исходную систему и возмущённую систему, характеризующие экспоненциальное убывание на бесконечности.

Сохранить в закладках
ОБ ОДНОМ МЕТОДЕ УСПОКОЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ С ПОСЛЕДЕЙСТВИЕМ (2025)
Выпуск: Т. 10 № 1 (2025)
Авторы: Гребенщиков Борис Георгиевич, Васильев Ю. С., Ложников Андрей Борисович

Изучается дифференциальное уравнение математической модели вертикального маятника, в правой части которого содержатся члены с линейным запаздыванием. Исследуемое уравнение имеет нейтральный тип. Такие уравнения встречаются в задачах механики, биологии, в экономике. Исследуется задача стабилизации данной управляемой математической модели. Система содержит два линейных запаздывания. Поскольку эти запаздывания возрастают при t → ∞, стабилизация производится на бесконечном промежутке времени t. Успокоение системы, не содержащей вправой части нейтральных членов, производится с использованием алгоритма стабилизации, предложенного для обыкновенных дифференциальных уравнений. Для дальнейшей стабилизации используется алгоритм стабилизации разностных систем. Приведён конкретный числовой пример и осуществлён поиск численных решений уравнений, получающихся в процессе стабилизации. Для решения уравнений типа Ляпунова и численного подсчёта решений использовался пакет прикладных задач MatLab.

Сохранить в закладках