Архив статей журнала

ГЛОБАЛЬНАЯ УСТОЙЧИВОСТЬ И ОЦЕНКИ РЕШЕНИЙ В ОДНОЙ МОДЕЛИ ДИНАМИКИ ПОПУЛЯЦИИ С ЗАПАЗДЫВАНИЕМ (2024)
Выпуск: Т. 9 № 4 (2024)
Авторы: Скворцова Мария Александровна

Рассматривается модель динамики изолированной популяции, описываемая дифференциальным уравнением с запаздывающим аргументом. Изучается случай, когда в модели имеется не более двух положений равновесия, соответствующих полному вымиранию популяции и постоянной положительной численности популяции. Указаны условия на правую часть уравнения, при которых происходит стабилизация решений к положениям равновесия при произвольных неотрицательных начальных данных. Получены оценки скорости стабилизации в зависимости от коэффициентов уравнения, нелинейной функции, входящей в правую часть уравнения, и функции, заданной на начальном промежутке времени. Установленные оценки характеризуют скорость вымирания популяции и скорость стабилизации численности популяции к постоянной величине. Результаты получены с использованием функционалов Ляпунова - Красовского.

Сохранить в закладках