Архив статей журнала
В статье рассматривается концепция подключаемой рекомендательной системы заданий, предназначенной для персонализации образовательного процесса. В условиях цифровой трансформации образования традиционные образовательные платформы и системы управления обучением (LMS) часто не предоставляют достаточно гибких инструментов для адаптации контента под индивидуальные потребности студентов. В ответ на эту проблему предлагается создание рекомендательной системы, которая интегрируется с внешними образовательными модулями, такими как тренажеры, и использует цифровой профиль студента для анализа его образовательных потребностей. Цифровой профиль включает академические данные, поведенческие паттерны и психолого-физиологические показатели, что позволяет системе более точно прогнозировать потребности учащегося и предлагать соответствующие задания. Также рассматриваются методы кластеризации, используемые для группировки студентов с похожими характеристиками, и проблемы, связанные с «холодным стартом» системы. Описанная архитектура системы, основанная на модульности и масштабируемости, позволяет гибко интегрировать различные образовательные сервисы и обеспечивать персонализированное взаимодействие с учащимися. Разработанная система обещает значительно повысить эффективность учебного процесса, улучшая подход к обучению каждого студента.
В статье исследуются проблемы управления индивидуальной образовательной траекторией (ИОТ) студентов, базирующейся на анализе цифрового профиля и цифрового следа. Авторы подчеркивают значимость персонализации образовательного процесса для повышения его эффективности и адаптации к уникальным потребностям учащихся. Рассматриваются основные вызовы, связанные с использованием цифрового следа, включая его ограниченность, неполноту данных и сложности при прогнозировании академической успешности. Особое внимание уделено вопросам интеграции цифрового профиля в системы управления обучением, где отсутствие единой стандартизированной структуры затрудняет анализ и перенос данных между различными образовательными учреждениями. Также обсуждаются угрозы конфиденциальности и этические аспекты, связанные с хранением и обработкой личных данных студентов. Авторы подчеркивают необходимость разработки универсальных стандартов для структуры цифрового профиля, а также внедрения более эффективных методов сбора и анализа данных, включая использование данных социальных сетей и видеоаналитики. В заключение статьи акцентируется внимание на необходимости нахождения баланса между глубоким уровнем персонализации и сохранением способности студентов адаптироваться к разнообразным образовательным контекстам, чтобы избежать риска гиперперсонализации.