Публикации автора

Аналитическая модель облученности многоспектральных матричных фотоприемных устройств (2016)

Разработана аналитическая модель облученности фотослоя сканирующих и смотрящих матричных фотоприемных устройств (МФПУ). Плоскость фотослоя МФПУ в общем случае представляет собой любой заданный набор матриц фоточувствительных элементов (МФЧЭ) с различными спектральными характеристиками и расположением. Конструкция оптического тракта также представляет собой набор заданных плоскостей с любыми заданными окнами (диафрагмами), светопоглощающими экранами и светофильтрами, согласованными с заданным объективом и МФЧЭ. Учтены такие паразитные компоненты, как облученность от объектива, от всех светопоглощающих экранов и внешнего корпуса, от окон, с учетом их спектральных коэффициентов пропускания. Рассмотрены случаи с однородным и неоднородным внешним фоном, с изображением объектов с низкими и высокими пространственными частотами вплоть до точечных изображений.

Издание: УСПЕХИ ПРИКЛАДНОЙ ФИЗИКИ
Выпуск: Том 4, №4 (2016)
Автор(ы): Бурлаков Игорь Дмитриевич, Козлов Кирилл Владимирович, Патрашин Александр Иванович, Соляков Владимир Николаевич, Филачев Анатолий Михайлович
Сохранить в закладках
Математическое моделирование инфракрасного матричного фотоприемного устройства (2016)

Представленная математическая модель инфракрасного матричного фотоприемного устройства (ИК МФПУ) позволяет прогнозировать фотоэлектрические характеристики любого фоточувствительного элемента (ФЧЭ) матрицы, анализировать зависимости этих характеристик от конструктивных и эксплуатационных параметров и осуществлять их оптимизацию. Модель позволяет точно определять все характеристики ИК МФПУ с холодной диафрагмой произвольной формы, в том числе и многосвязной, с учетом всей совокупности паразитных излучений, падающих на матрицу фоточувствительных элементов (МФЧЭ). Для модели разработан новый способ определения облученности МФПУ, использующий новый конструктивный параметр — коэффициент пропускания холодной диафрагмы. Коэффициент пропускания диафрагмы определяется интегралом по площади холодной диафрагмы, включающим координаты заданной точки в плоскости МФЧЭ, расстояние от этой плоскости до плоскости диафрагмы, форму и размеры диафрагмы. Доказано, что фоновая облученность прямо пропорциональна произведению коэффициента пропускания диафрагмы на облучённость от протяжённого источника излучения (абсолютно черное тело) с известной температурой, расположенного в полусфере вокруг заданной точки МФЧЭ. Проведена экспериментальная оценка корректности модели сравнением сигналов, шумов и фотоэлектрических характеристик ФЧЭ ИК МФПУ на основе фотодиодов с известными конструктивными и эксплуатационными параметрами. Их МФЧЭ чувствительны в диапазонах 0,9—1,7 мкм, 3—5 мкм и 8—10,6 мкм. Получены хорошие совпадения характеристик, подтверждающие корректность модели.

Издание: УСПЕХИ ПРИКЛАДНОЙ ФИЗИКИ
Выпуск: Том 4, №3 (2016)
Автор(ы): Филачев Анатолий Михайлович, Патрашин Александр Иванович, Бурлаков Игорь Дмитриевич, Болтарь Константин Олегович, Шабаров Владимир Вениаминович
Сохранить в закладках
Аналитический метод оценки параметров инфракрасного многорядного фотоприемного устройства (2017)

Представлен аналитический метод расчета параметров инфракрасного (ИК) фотоприемного устройства с заданной топологией матрицы фоточувствительных элементов (МФЧЭ), осуществляющего регистрацию малоразмерных объектов в режиме линейного сканирования. Метод позволяет оценить отношение сигнал/шум и пространственное разрешение ИК фотоприемного устройства (ФПУ) с режимом временной задержки и накопления (ВЗН) с учетом функции рассеяния точки оптической системы, пространственного распределения чувствительности фоточувствительных элементов (ФЧЭ), параметров дискретизации, ВЗН-суммирования и накопления, значений дробового шума и шума считывания, согласованного суммирования выходных сигналов ИК ФПУ. Проведена оценка пространственного разрешения ИК ФПУ в направлении сканирования, а также в направлении, ортогональном сканированию по двум малоразмерным объектам и по гармоническим мирам в зависимости от параметров топологии МФЧЭ. Найдены оптимальные размеры ФЧЭ (обеспечивающие максимальное отношение сигнал/шум, пространственное разрешение системы при этом не учитывалось) при регистрации пятна излучения в плоскости МФЧЭ, расположенного в максимуме/минимуме пеленгационной характеристики, с учетом/без учета шума считывания, с учетом/без учета дополнительной пространственной обработки выходных сигналов.

Издание: УСПЕХИ ПРИКЛАДНОЙ ФИЗИКИ
Выпуск: Том 5, №5 (2017)
Автор(ы): Козлов Кирилл Владимирович, Стрельцов Вадим Александрович, Патрашин Александр Иванович, Косых Валерий Петрович, Громилин Геннадий Иванович
Сохранить в закладках
Метод измерения квантовой эффективности и темнового тока фоточувствительных элементов МФПУ (2017)

Проведены исследования работоспособности и корректности метода измерения квантовой эффективности и темнового тока ФЧЭ матричных фотоприемных устройств, а также справедливости разработанного алгоритма расчета указанных параметров по трем измерениям выходного сигнала при разных температурах АЧТ и отличных от нуля временах накопления. Исследования проводились с помощью разработанного пакета программного обеспечения, позволяющего автоматически рассчитывать величины темновых токов ФЧЭ, величины их квантовых эффективностей, значения начальных напряжений отсчета выходных сигналов ячеек кремниевых мультиплексоров, однородность распределения указанных параметров по площади МФЧЭ, строить 2D-распределения и гистограммы параметров в заданных масштабах, определять степень дефектности МФЧЭ. Исследование корректности метода расчета квантовых эффективностей и темновых токов ФЧЭ методом сравнения зависимости экспериментально измеренных и теоретически рассчитанных выходных сигналов ФЧЭ от температуры АЧТ при заданном времени накопления показало совпадение теории и эксперимента с точностью до 2 %.

Издание: УСПЕХИ ПРИКЛАДНОЙ ФИЗИКИ
Выпуск: Том 5, №4 (2017)
Автор(ы): Патрашин Александр Иванович, Ковшов Владимир Сергеевич , Козлов Кирилл Владимирович, Бурлаков Игорь Дмитриевич, Никонов Антон Викторович
Сохранить в закладках
Математическая модель крупноформатного инфракрасного фотоприемного устройства при временной задержке и накоплении (2017)

Представлена математическая модель оптико-электронного тракта крупноформатного инфракрасного (ИК) фотоприемного устройства с режимом временной задержки и накопления (ВЗН), предназначенного для регистрации малоразмерных объектов. Модель позволяет получать изображения на выходе сканирующего фотоприемного устройства большого формата (с количеством каналов ВЗН, большим 10000) и прогнозировать параметры приборов с учетом погрешностей установки отдельных фотоприемных модулей, паразитной засветки фоточувствительного слоя, шумов оптико-электронного тракта, взаимного влияния сигналов внутри ФПУ, разброса чувствительности и темновых токов фоточувствительных элементов (ФЧЭ), недостатков схемы ВЗН-суммирования и т. д. В модели также реализована возможность моделирования сигналов в режиме с адаптивным временем накопления. Модель ИК ФПУ состоит из четырех основных частей: аналитической модели облученности (АМО), позволяющей рассчитать распределение облученности в плоскости фотослоя от сцены и элементов конструкции ФПУ; аналитической модели сигналов (АМС), в рамках которой оптико-электронный тракт ФПУ представлен произведением частотных передаточных функций отдельных линейных процессов; имитационной модели сигналов (ИМС), являющейся более общей (чем АМС) моделью и содержащей подробное описание отдельных модулей реальных ФПУ; аналитической модели шумов (АМШ), позволяющей рассчитать шумы ИК ФПУ с различной схемотехникой большой интегральной схемы (БИС) считывания при известных фототоках и темновых токах каждого из ФЧЭ. В данной статье представлена первая часть работы – описание математического аппарата моделей.

Издание: УСПЕХИ ПРИКЛАДНОЙ ФИЗИКИ
Выпуск: Том 5, №2 (2017)
Автор(ы): Козлов Кирилл Владимирович, Патрашин Александр Иванович, Стрельцов Вадим Александрович
Сохранить в закладках
Современные инфракрасные фотоприемные устройства для сканирующей аппаратуры дистанционного зондирования Земли (обзор) (2017)

Представлен обзор литературы по многорядным инфракрасным (ИК) фотоприемным устройствам (ФПУ) космического базирования, предназначенным для дистанционного зондирования Земли. Рассмотрены виды устройств, их назначения, основные спектральные диапазоны и принципы работы. Приведены наиболее распространенные схемы цифровых и аналоговых ячеек большой интегральной схемы (БИС) считывания фотосигналов многорядных ИК ФПУ, для каждой схемы указаны условия применимости. Рассмотрены три способа реализации режима временной задержки и накопления (ВЗН): аналоговое суммирование внутри БИС, цифровое суммирование внутри БИС, цифровое суммирование в блоке цифровой обработки. Представлены структурные либо принципиальные схемы ВЗНсуммирования. Рассмотрены наиболее распространенные топологии фоточувствительных элементов (ФЧЭ) многорядных ИК ФПУ космического базирования. Проведен анализ математических моделей многорядных ИК ФПУ.

Издание: УСПЕХИ ПРИКЛАДНОЙ ФИЗИКИ
Выпуск: Том 5, №1 (2017)
Автор(ы): Козлов Кирилл Владимирович, Патрашин Александр Иванович, Бурлаков Игорь Дмитриевич, Бычковский Ярослав Сергеевич, Дражников Борис Николаевич, Кузнецов Петр Александрович
Сохранить в закладках
Математическая модель альтернативного метода измерения спектральной чувствительности ИК матричного фотоприемного устройства (2018)

Разработана математическая модель, позволяющая экспериментально реализовать метод измерения спектральной чувствительности ИК ФЧЭ, использующий модель черного тела (МЧТ) и систему регистрации сигналов ИК МФПУ. Построена теоретическая модель расчета спектральной чувствительности и проведено исследование корректности метода.

Издание: УСПЕХИ ПРИКЛАДНОЙ ФИЗИКИ
Выпуск: Том 6, №5 (2018)
Автор(ы): Ковшов Владимир Сергеевич , Патрашин Александр Иванович, Никонов Антон Викторович
Сохранить в закладках
Метод установки заданной облученности от модели чёрного тела (2018)

Рассмотрен метод установки заданной облученности, создаваемой моделью черного тела (МЧТ) в произвольной плоскости. Метод основан на использовании нового параметра – коэффициента излучения МЧТ. Коэффициент излучения МЧТ – это отношение потоков излучения (квантового или энергетического), исходящих соответственно от излучающей площадки и от бесконечно большой излучающей плоскости с той же температурой и степенью черноты, но падающих в заданную точку параллельной плоскости. Данный параметр позволяет просто и корректно определить величину облученности в заданной точке плоскости, отстоящей от МЧТ на заданном расстоянии. МЧТ может иметь излучающую площадку с любой заданной формой, размерами, температурой и степенью черноты. Приведен вывод аналитических выражений коэффициента излучения и облученности, создаваемой МЧТ. Рассмотрены облученности, создаваемые МЧТ с круглыми и квадратными диафрагмами и распределения облученности по площади. Показано, что отличие облученностей от МЧТ с равновеликими круглой и квадратной излучающими площадками близко к одному проценту. На основе предложенного метода расчета облученности предложен метод установки заданной облученности и неоднородности облученности от МЧТ.

Издание: УСПЕХИ ПРИКЛАДНОЙ ФИЗИКИ
Выпуск: Том 6, №4 (2018)
Автор(ы): Патрашин Александр Иванович, Козлов Кирилл Владимирович, Ковшов Владимир Сергеевич , Никонов Антон Викторович, Стрельцов Вадим Александрович
Сохранить в закладках
Обобщенный метод расчета облученности от абсолютно черного тела (2018)

Рассмотрен метод расчета облученности, создаваемой абсолютно черным телом (АЧТ) в произвольной плоскости, параллельной его диафрагме. Метод основан на использовании понятия «коэффициент пропускания холодной диафрагмы МФПУ», описывающего отношение потока излучения, попадающего в заданную точку плоскости сквозь диафрагму, к потоку излучения, падающему в данную точку из полусферы. Установлена полная сходимость результатов расчета величины облученности предложенным методом и единственным нормативным методом, описанным в ГОСТ 17772–88. Рассмотрены результаты расчета облученностей и нормированной разности облученностей от АЧТ с круглыми и квадратными диафрагмами в диапазоне от 0,06 мм до 20 см, и распределения облученности по площади. Показано, что облученность от АЧТ с круглой диафрагмой отличается от облученности, создаваемой АЧТ с квадратной диафрагмой такой же площади, не более, чем на один процент. Установлена полная применимость предложенного метода для расчета облученности, создаваемой АЧТ.

Издание: УСПЕХИ ПРИКЛАДНОЙ ФИЗИКИ
Выпуск: Том 6, №2 (2018)
Автор(ы): Патрашин Александр Иванович, Никонов Антон Викторович, Ковшов Владимир Сергеевич
Сохранить в закладках
Математическая модель процесса модуляции излучения МЧТ (2019)

Подробно проанализирован процесс модуляции излучения модели черного тела (МЧТ) стандартным электромеханическим модулятором, осуществляющим стопроцентную модуляцию. Получены аналитические функции, описывающие модулированные потоки излучения МЧТ и диска модулятора. Используя приведенное в ГОСТ 17772-88 определение коэффициента формы модуляции, рассчитаны значения искомого коэффициента. Проведен сравнительный анализ полученных значений с табличными данными ГОСТ 17772-88 для круглых и квадратных диафрагм МЧТ. Установлено совпадение расчетных данных и данных ГОСТ для круглых диафрагм. Показана необходимость корректировки данных ГОСТ для квадратных диафрагм. Установлена причина расхождения полученных результатов с данными ГОСТ.

Издание: ПРИКЛАДНАЯ ФИЗИКА
Выпуск: №4 (2019)
Автор(ы): Ковшов Владимир Сергеевич , Патрашин Александр Иванович
Сохранить в закладках
Метод измерения абсолютной спектральной характеристики ИК МФПУ (2019)

Рассмотрены физические и технические аспекты реализации альтернативного метода измерения абсолютной спектральной характеристики ИК МФПУ (спектр токовой чувствительности, вольтовой чувствительности и квантовой эффективности) без участия спектральных приборов. Метод основан на многократном измерении выходного сигнала всех ФЧЭ, генерированного модулированным излучением черного тела (МЧТ) при разных его температурах. Cигнал измеряется на фоне суммы постоянных сигналов, обусловленных излучением фона, входного оптического окна, модулятора излучения МЧТ, темновым током ФЧЭ и постоянным сигналом БИС-мультиплексора. На измеренных сигналах ФЧЭ строится система интегральных уравнений Фредгольма первого рода. В ее левой части стоят измеренные сигналы МЧТ, а в правой части системы стоят аналитические выражения, описывающие данные сигналы. Решением системы являются абсолютные значения вышеуказанных спектральных компонент всех ФЧЭ МФПУ. Рассмотрена блок-схема установки измерения, проанализированы функциональные особенности ее работы и обоснованы требования к ее блокам. Показаны дополнительные преимущества нового метода по сравнению с существующими методами.

Издание: УСПЕХИ ПРИКЛАДНОЙ ФИЗИКИ
Выпуск: Том 7, № 1 (2019)
Автор(ы): Патрашин Александр Иванович, Ковшов Владимир Сергеевич , Никонов Антон Викторович, Бурлаков Игорь
Сохранить в закладках