Книга: Введение в теорию интегралов Фурье
Цель этой книги — дать более систематическое изложение элементов теории интегралов Фурье, чем это делалось до сих пор. Однако, я не касаюсь здесь ряда важных разделов недавнего происхождения: винеровских гауссовских теорем; применений к почти периодическим функциям, квазиналитическим функциям и целым функциям; интегралов Фурье-Стилтъеса; общего гармонического анализа; обобщённых интегралов Бохнера, а также теории интегралов Фурье для функций нескольких переменных, краткое изложение которой дано в книге Бохнера (*).
От читателя требуется знакомство с анализом, включая элементы теории рядов Фурье. Предлагаемую книгу можно рассматривать как продолжение моей “Theory of functions”.
В литературе можно встретить большое количество самых разнообразных применений интегралов Фурье, часто в форме “операторов”, часто также в работах авторов, по-видимому, интересовавшихся специально аналитической стороной вопроса. Некоторые из этих применений я использовал здесь в качестве упражнений, обработав их так, как представлялось мне наиболее интересным для аналитика. Я считаю, ввиду их обилия, повторение ссылок излишним, а изучающие аналитическую сторону интегралов Фурье должны понимать, что для этого вовсе не обязательно быть в курсе всех существующих работ или даже не знать о существовании этих вещей.
Информация о документе
- Формат документа
- PDF, DJVU
- Кол-во страниц
- 479 страниц
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 24
Предпросмотр документа
Информация о книге
- Издательство
- Гостехиздат
- Год публикации
- 1948
- Каталог SCI
- Математика
- ББК
- 22.1. Математика
- УДК
- 51. Математика