Исследованы спектральные свойства растворенного органического вещества природной воды двух частей искусственно отделенного от Белого моря водоема — губы Канда: морского плеса и меромиктического Федосеевского плеса. Для сравнения проанализированы данные для естественных меромиктических водоемов — озера Елового, Трехцветного, Лагуны на Зеленом мысе. Для проб воды с разных горизонтов получены спектры поглощения, спектры флуоресценции и зависимости квантового выхода флуоресценции от длины волны возбуждения в диапазоне изменения длины волны возбуждения 250−500 nm. Построены зависимости длины волны максимума испускания от длины волны возбуждения и рассчитана величина “ синего сдвига“ — смещения максимума полосы испускания в коротковолновую сторону. Показано, что интенсивность флуоресценции растворенного органического вещества в Федосеевском плесе выше, чем в морском, при этом зависимость квантового выхода флуоресценции от длины волны возбуждения в обеих частях Канда-губы имеет качественно сходный характер, но различается абсолютными значениями.
В естественных меромиктических водоемах эта зависимость имеет аналогичный характер, также различаясь абсолютной величиной квантового выхода флуоресценции, что говорит о разном соотношении ароматических и алифатических органических соединений. Таким образом, выявлены различия в спектрально-оптических свойствах растворенного органического вещества двух частей искусственно отделенного водоема и природных водоемах, изолированных от Белого моря. Спектрально-оптические характеристики водной толщи морских заливов, естественно или искусственно отделенных от основного морского бассейна, могут служить объективным индикатором трофического (экологического) состояния водоема.
Идентификаторы и классификаторы
- Префикс DOI
- 10.61011/OS.2024.04.58215.25-24
Растворенное органическое вещество (РОВ), содержащееся в природной воде любого типа, играет важную роль в природных биохимических процессах и влияет на функционирование водных экосистем [1–4]. Окрашенное РОВ природного происхождения эффективно поглощает УФ свет и люминесцирует, от его состава и концентрации зависят оптические свойства природной воды. В настоящее время для его исследования успешно применяются спектроскопия поглощения света и флуоресцентная спектроскопия. Спектры поглощения и флуоресценции природной воды можно использовать для качественной и количественной характеристики РОВ природной воды (в экологическом мониторинге и дистанционном зондировании). Так, например, в работах [3,5–9] флуоресцентную спектроскопию и спектроскопию поглощения использовали для исследования РОВ природной воды: Карского моря [3,5,6], моря Лаптевых [7], Онежского залива Белого моря [8], а также воды пресноводных озер Карелии [9]. Отдельный интерес для
исследования состава и распределения РОВ представляют меромиктические водоемы — водоемы с устойчивой вертикальной стратификацией, которая возникает из-за разной плотности слоев воды.
Список литературы
- Е.А. Романкевич, А.А. Ветров, В.И. Пересыпкин. Геология и геофизика, 50 (4), 401 (2009). [E.A. Romankevich, A.A. Vetrov, V.I. Peresypkin. Rus. Geol. Geophys., 50 (4), 291 (2009)]
- Е.А. Романкевич. Геохимия органического вещества в океане (Наука, М.,1977)
- Д.И. Глуховец, Ю.А. Гольдин. Фунд. и прикл. гидрофиз., 11 (3), 34 (2018)
- А.И. Лактионов. Оптика атмосф. и океана, 18 (11), 983 (2005). [A. I. Laktionov. Atmosph. Oceanic Opt., 18 (11) 886 (2005)]
- А.Н. Дроздова, С.В. Пацаева, Д.А. Хунджуа. Океанология, 57 (1), 49 (2017). [A.N. Drozdova, S.V. Patsaeva, D.A. Khundzhua. Oceanology, 57 (1), 41 (2017)]. DOI: 10.1134/S0001437017010039
- А.С. Ульянцев, В.В. Очередник, Е. А. Романкевич. Докл. Академии наук, 460 (1), 93 (2015)
- А.Н. Дроздова. Опт. и спектр., 126 (3), 383 (2019). [A.N. Drozdova. Opt. Spectrosc., 126 (3), 303 (2019)]. DOI: 10.1134/S0030400X19030068
- А.Ф. Зайцева, И.В. Конюхов, Ю.В. Казимирко, С.И. Погосян. Океанология, 58 (2), 251 (2018). [A.F. Zaitseva, I.V. Konyukhov, Y.V. Kazimirko, Pogosyan S.I. Oceanology, 58 (2), 233(2018)]. DOI: 10.1134/S0001437018020169
- Д.А. Хунджуа, С.В. Пацаева, О.А. Трубецкой, О.Е. Трубецкая. Вестн. Моск. ун-та. Серия 3: Физ., астр., 1, 66 (2017). [D.A. Khundzhua, S.V. Patsaeva, O.A. Trubetskoj, O.E. Trubetskaya. Moscow Univ. Phys. Bull., 72 (1), 68 (2017)]. DOI: 10.3103/S0027134907060082
- Е.Д. Краснова. Водные ресурсы, 48 (3), 323 (2021). [E.D. Krasnova. Water Resour., 48 (3), 427(2021)]. DOI:10.1134/S009780782103009X
- Е.Д. Краснова, М.В. Мардашова. Природа, 1, 16 (2020). DOI:10.7868/S0032874X20010020
- A.A. Жильцова, O.A. Филиппова, E.Д. Краснова, Д.A. Воронов, С.В. Пацаева. Опт. и спектр., 131 (6), 817 (2023). DOI:10.21883/OS.2023.06.55916.108-23
- А.С. Саввичев, Н.А. Демиденко, Е.Д. Краснова, О.А. Калмацкая, А.В. Харчева, М.В. Иванов. Докл. Академии наук, 474 (5), 637 (2017). [A.S. Savvichev, N.A. Demidenko, E.D. Krasnova, O.A. Kalmatskaya, A.V. Kharcheva, M.V. Ivanov. Doklady Biological Sciences, 474 (1), 135 (2017)]. DOI:10.1134/S0012496617030103
- Т.С. Смирнова. Гидробиологич. журнал, 1 (4), 27 (1965)
- Н.А. Демиденко, А.С. Саввичев, А.В. Савенко В сб.: Поздне- и постгляциальная история белого моря: геология, тектоника, седиментационные обстановки, хронология (КДУ, М., 2018), с. 43-52
- Н.А. Демиденко, А.С. Саввичев. География: развитие науки и образования Коллективная монография по материалам ежегодной международной научно-практической конференции LXXIII Герценовские чтения (Изд-во РГПУ им. А.И. Герцена, СПб., 2020), с. 285-290
- А.С. Саввичев, Н.А. Демиденко, В.В. Кадников, В.В. Беленкова, И.И. Русанов, В.М. Горленко. Микробиология, 92 (6), 595 (2023). [A.S. Savvichev, N.A. Demidenko, V.V. Kadnikov, V.V. Belenkova, I.I. Rusanov, V.M. Gorlenko. Microbiology, 92 (6) 819 (2023)]. DOI: 10.1134/S002626172360194X
- Ю.Г. Соколовская , А.А. Жильцова, Е.Д. Краснова, Д.А. Воронов, С.В. Пацаева. Опт. и спектр., 131 (6), 872 (2023). DOI 10.21883/OS.2023.06.55924.111-23
- Yu.G. Sokolovskaya, E.D. Krasnova, D.A. Voronov, D.N. Matorin, A.A. Zhiltsova, S.V. Patsaeva. Photonics, 10 (6), 672 (2023). DOI: 10.3390/photonics10060672
- Л.А. Галкина, Л.Е. Позднякова, Т.Я. Цееб. Океанология, 3 (5), 898 (1963)
- Л.Б. Друмева, Ю.В. Лупачев, В.П. Лучков, М.В. Маврина. В сб.: Химия и биология морей. Под ред. А.И. Симонова ( Гос. океаногр. ин-т, Гидрометеоиздат, М., 1987), с. 49-53
- О.А. Трубецкой, О.Е. Трубецкая. Водные ресурсы, 46 (4), 428 (2019). [O.A. Trubetskoj, O.E. Trubetskaya, Water Resour., 46 (4), 605 (2019)]. DOI:10.1134/S0097807819040171
- J.R. Lakowicz. Principles of Fluorescence Spectroscopy (Springer, New York, 1986)
- U. Wunsch, K. Murphy, C. Stedmon. Frontiers in Marine Science, 2, 1 (2015). DOI: 10.3389/fmars.2015.00098
- D.F. Eaton. Pure & Appl. Chem., 60 (7), 1107 (1988)
- О.В. Овчинников, М.С. Смирнов, С.В. Асланов. Опт. и спектр., 128 (12), 1926 (2020). [O.V. Ovchinnikov, M.S. Smirnov, S.V. Aslanov. Opt. Spectrosc., 128 (12), 2028 (2020)]. DOI: 10.1134/S0030400X2012098X
- A.N. Drozdova, M.D. Kravchishina, D.A. Khundzhua, M.P. Freidkin, S.V. Patsaeva. Int. J. Remote Sens., 39 (24), 9356 (2018). DOI: 10.1080/01431161.2018.1506187
- S.A. Green, N.V. Blough. Limnol. Oceanogr., 39 (8) 1903 (1994). DOI: 10.4319/lo.1994.39.8.1903
- R. Del Vecchio, N.V. Blough. Marine Сhem., 89 (1-4), 169(2004)
- R. Zepp, W. Sheldon, M. A. Moran. Marine Chem., 89 (1-4), 15(2004). DOI: 10.1016/j.marchem.2004.02.006
- A.A. Andrew, R. Del Vecchio, A. Subramaniam, N.V. Blough. Mar. Chem., 148, 33 (2013). DOI: 10.1016/j.marchem.2012.11.001
- O. Donard, M. Lamotte, C. Belin, M. Ewald. Marine Chem., 27 (1-2), 117 (1989)
- О.М. Горшкова, С.В. Пацаева, Е.В. Федосеева, Д.М. Шубина, В.И. Южаков. Вода: химия и экология, 11, 31(2009)
Выпуск
Другие статьи выпуска
Рентгеновская визуализация в темном поле в последние годы нашла применение в различных областях науки и техники, в том числе в медицине, биологии и материаловедении. Обзор посвящен описанию различных методов рентгеновской темнопольной визуализации. Рассмотрены экспериментальные оптические схемы методов, приемы сбора данных и их обработки, перспективность и ограничения их использования. Особое внимание уделено мультимодальным методам, способным отделить сигнал малоуглового рассеяния от абсорбционного и фазово-контрастного сигнала. Ключевые слова: рентгеновские лучи, визуализация, темное поле, мультимодальные методы, интерферометр Тальбота, кристаллический анализатор, рентгеновская решетка, рентгеновская сетка.
Синтез наноструктур перовскита при комнатной температуре посредством переосаждения в присутствии лигандов позволяет точно контролировать их форму и размеры, а легирование определенными ионами позволяет получить дополнительные полосы фотолюминесценции, открывая возможности для настройки их оптических свойств. Представлены методы синтеза органо-неорганических наноструктур перовскита с различной морфологией при комнатной температуре. Путем подбора типа и соотношения лигандов синтезированы нанокристаллы и нанопластины перовскита с химической формулой FAPbBr3. Обработка предварительно синтезированных нанокристаллов перовскита прекурсором MnCl2 при комнатной температуре позволила получить нанокристаллы Mn2+:FAPbClxBr3-x с излучением в двух различных спектральных диапазонах. Ключевые слова: нанокристаллы перовскита, нанопластины перовскита, легирование, дихлорид марганца, фотолюминесценция.
Теоретически исследовано прохождение униполярного полуциклового импульса через слой неравновесной трехуровневой резонансной среды с разными схемами уровней энергии. Показано, что в такой системе исходный униполярный импульс постепенно трансформируется в биполярный за счет образования осциллирующих хвостов на заднем фронте импульса. В то же время в зависимости от конкретной схемы уровней энергии среды может происходить как усиление, так и затухание основного полуциклового всплеска поля с пройденным расстоянием в среде. При этом во всех случаях выполняется правило сохранения электрической площади, но степень униполярности импульса всегда уменьшается по мере распространения в слое среды. Ключевые слова: предельно короткие импульсы, электрическая площадь импульса, униполярные импульсы, взаимодействие излучения с веществом.
На основе численного решения системы уравнений Максвелла-Блоха проведено сравнение динамики решеток разности населенностей и поляризации среды, моделированных в двух- и трехуровневом приближении. Показано, что решетки также возникают и в трехуровневой среде, однако их динамика качественно не отличается от двухуровневой среды при выбранных параметрах модели. Ключевые слова: решетки разности населенностей, полуцикловые импульсы, аттосекундные импульсы, когерентные эффекты, двухуровневая среда.
Теоретически описан класс однонаправленных осесимметрических локализованных импульсов. Установлена эквивалентность их представлений в виде относительно неискажающихся квазисферических волн, в виде интегралов Фурье-Бесселя и в виде суперпозиции плоских волн с волновыми векторами, имеющими положительные проекции на заданное направление. Ключевые слова: локализованные импульсы, однонаправленные импульсы, точные решения.
Выполнено моделирование эффекта когерентного обратного рассеяния на основе уравнения Бете-Солпитера при учете анизотропии с помощью двух различных фазовых функций. Обнаружено, что с ростом анизотропии индикатрисы однократного рассеяния расчеты с фазовой функцией Рэлея-Ганса приводят к более широким угловым пикам когерентного обратного рассеяния, чем расчеты с фазовой функцией Хеньи-Гринштейна. Моделирование когерентного обратного рассеяния методом Монте-Карло на основе фазовой функции Рэлея-Ганса выполнено впервые. На основе альтернативных фазовых функций исследовано влияние понижения длины пространственной когерентности падающего излучения на форму углового пика когерентного обратного рассеяния. Показано, что с уменьшением длины когерентности обе модели приводят к уширению пика, что может быть использовано в биомедицинской диагностике. Ключевые слова: Когерентное обратное рассеяние, моделирование Монте-Карло, уравнение Бете-Солпитера.
Оптимизированы химический состав и структура фотокатализатора ZnO-SnO2-Fe2O3 для сенсорных и медицинских приложений. Фотокаталитические материалы синтезированы жидкостным полимерно-солевым способом, их структура и химический состав исследованы методами рентгенофазового анализа, сканирующей электронной микроскопии, рентгеноспектрального микроанализа, оптической и люминесцентной спектроскопии. Полученные композиты состоят из гексагональных кристаллов ZnO, тетрагональных кристаллов SnO2 и шпинели ZnSn2O4. Ширина запрещенной зоны композитов составляет 3.17-3.24 eV. Кинетические зависимости адсорбции органического диазокрасителя Chicago Sky Blue из растворов на поверхности композитов хорошо описываются кинетическими уравнениями как псевдопервого, так и псевдовторого порядков. Кинетика фотокаталитического разложения красителя в растворах под действием как УФ, так и видимого света хорошо описывается кинетическим уравнением первого порядка. Показано, что добавки серебра позволяют заметно повысить адсорбционные и фотокаталитические свойства материалов системы SnO-SnO2-Fe2O3. Ключевые слова: нанокристаллы, гетероструктура, фотокатализ, адсорбция.
Зарегистрированы спектры люминесценции кристалла YAl3(BO3)4:Cr3+ в спектральном диапазоне запрещённых по спину электронных переходов 2E->4A2 в ионах Cr3+ (14550-14700 cm-1) с высоким спектральным разрешением при температурах 4-300 K. Температурные зависимости отношений интегральных интенсивностей линий R2 и R1, а также N’ и N (предположительно линий переходов 2E->4A2 центра Cr3+ в искажённой вследствие близости некоторого дефекта позиции) хорошо соответствуют распределению Больцмана. На измерении этих отношений может быть реализован ратиометрический термометр с максимумами абсолютной чувствительности при температурах 40.3 и 21.6 K и относительной чувствительностью до 12% K-1. Измерение ширины самой интенсивной спектральной компоненты - линии R1 - может быть способом регистрации температуры в диапазоне от 100 K и выше. Ключевые слова: люминесцентная криотермометрия, кристалл YAl3(BO3)4:Cr3+, фурье-спектроскопия высокого разрешения.
Предложено для измерения реакции зрачка глаза на изменение освещенности использовать инфракрасную подсветку, что позволяет разделить функции воздействия на глаз и регистрации его реакции. Создана соответствующая установка, позволяющая измерять диаметр и интегральную площадь зрачка, а также скорость его сужения. Представлены результаты тестирования установки, свидетельствующие о ее технических возможностях. Ключевые слова: оптические измерения, зрение человека, зрачковая реакция глаза.
Микроскопия на основе эффекта твердотельной иммерсии - это метод ближнепольной визуализации, который позволяет преодолеть дифракционный предел Аббе за счет фокусировки светового пучка на малом расстоянии за линзой с высоким показателем преломления. Он обеспечивает высокую энергетическую эффективность благодаря отсутствию каких-либо субволновых зондов или диафрагм в оптическом тракте. Выгодное сочетание сверхразрешения и высокой энергетической эффективности открывает широкие возможности применения данного метода в различных областях науки и техники. Пространственное разрешение микроскопии на основе эффекта твердотельной иммерсии в основном ограничено значением показателя преломления линзы, при этом более оптически плотные линзы обеспечивают более высокое разрешение. В настоящей работе объемный кристалл рутила (TiO2) впервые используется в качестве материала для иммерсионной линзы, которая обеспечивает впечатляющий показатель преломления ~10 в терагерцовом диапазоне. Это самое высокое значение показателя преломления, когда-либо использовавшееся в микроскопии на основе эффекта твердотельной иммерсии. Для создания микроскопа использовались лавинно-пролетный диод в качестве источника непрерывного излучения на частоте 0.2 THz (длина волны λ=1.5 mm) и детектор Голея. Экспериментальные исследования показали, что пространственное разрешение разработанного микроскопа находится в пределах 0.06-0.11λ. Это самое высокое разрешение, когда-либо зарегистрированное для любой оптической системы на основе эффекта твердотельной иммерсии. Ключевые слова: терагерцовые технологии, терагерцовые оптические материалы, рутил, высокий показатель преломления, ближнепольная микроскопия, микроскопия на основе эффекта твердотельной иммерсии, сверхразрешение.
Рассмотрены два метода анализа изображений, полученных с помощью оптической когерентной томографии (ОКТ): анализ коэффициента ослабления и спекл-структур изображений применительно к дифференциации интактных тканей и опухолей головного мозга крыс. Использована модель глиомы 101.8. Для извлечения информации из спекл-структур был применен метод вейвлетного анализа ОКТ-изображений и посчитана мощность локальных флуктуаций яркости в спеклах. При помощи линейного дискриминантного анализа оценивалась эффективность разработанного подхода, состоящего из двух методов, на основе значений чувствительности, специфичности и точности при дифференциации модели глиомы и интактных тканей. Результаты исследования показали преимущества разработанного метода анализа ОКТ-изображений для нейрохирургии. Ключевые слова: оптический когерентный томограф, глиома, вейвлетный анализ, линейный дискриминант Фишера, спекл-структуры, коэффициент ослабления.
Исследовано взаимодействие бактериохлорофилла с различными полярными растворителями, такими как вода, метанол, этанол и изопропанол. Проведены расчеты с использованием программного пакета Gaussian и базиса 6-31G (d) для определения структуры бактериохлорофилла и свойств его водородных связей. Полученные результаты подтверждают значимость водородных связей при взаимодействии бактериохлорофилла е с полярными растворителями. Данные растворители чаще всего используются для экстракции бактериохлорофиллов из бактериальных клеток, поэтому настоящая работа полезна для разработки методов количественного определения бактериохлорофилла e в бактериальных клетках или в водоёмах.
Исследованы индукционные изменения флуоресценции листьев растений картофеля и бархатцев после обработки клубней (картофель) и опрыскивания вегетирующих растений (бархатцы) препаратом “ ЭпинЭкстра“ и кремнийсодержащим жидким органическим удобрением “ Силиплант“. Использование этих препаратов позволило компенсировать негативные воздействия на фотосинтетический аппарат растений, связанные с обработкой клубней картофеля фунгицидом “ Максим“, а также выдерживанием растений бархатцев при температуре 5◦С в течение трех суток.
Оценен потенциал применимости мультихромофорного соединения, состоящего из восьми хромофоров 4,4-дифтор-4-бор-3а,4а-диаза-s-индацен (BODIPY), связанных через алифатический спейсер с силоксановым ядром, для мониторинга параметров мембран в живых эукариотических клетках. Указанное соединение обладает значительным сольватохромизмом за счет внутримолекулярных взаимодействий хромофоров.
Обнаружено, что параметры внешней среды существенно влияют на флуоресцентные свойства красителя, в частности, на время жизни флуоресценции. Это позволило использовать его для мониторинга параметров мембранных структур клетки методом микроскопии с визуализацией времени жизни флуоресценции (fluorescence lifetime imaging microscopy, FLIM).
Представлены результаты исследования по оценке состава разных форм аллогенного коллагенсодержащего материала (гидрогеля) в качестве потенциального компонента биочернил в перспективном направлении тканевой инженерии с помощью оптических методов (рамановской и ИК спектроскопии). В результате проведенных исследований с помощью метода спектроскопии комбинационного рассеяния (КР) установлено, что в негидролизованной форме коллагена относительное содержание пролина и гидроксипролина меньше, чем в гидролизованной форме, что может говорить о нарушениях структурной организации коллагенсодержащего материала (по спектральным особенностям пролина и гидроксипролина). На основе дисперсионного анализа был разработан алгоритм идентификации разных форм аллогенного коллагенсодержащего материала с помощью дерева решений. Установлено, что с помощью методов рамановской и ИК спектроскопии можно проводить экспресс-анализ состава и типов коллагеновых материалов, а также контролировать степень денатурации коллагена при разработке биочернил. Ключевые слова: рамановская спектроскопия, ИК спектроскопия, алгоритм идентификации коллагенов, гидрогель, биочернила, коллагенсодержащий материал, дисперсионный анализ.
Издательство
- Издательство
- ФТИ им. А.Ф. Иоффе
- Регион
- Россия, Санкт-Петербург
- Почтовый адрес
- 194021, Санкт-Петербург, Политехническая ул., 26
- Юр. адрес
- 194021, Санкт-Петербург, Политехническая ул., 26
- ФИО
- Иванов Сергей Викторович (Руководитель)
- E-mail адрес
- post@mail.ioffe.ru
- Контактный телефон
- +7 (812) 2972245
- Сайт
- https://www.ioffe.ru