ФИЗИКО-ХИМИЧЕСКИЕ И КАТАЛИТИЧЕСКИЕ СВОЙСТВА МЕЗОПОРИСТЫХ АЛЮМОСИЛИКАТОВ, МОДИФИЦИРОВАННЫХ ИЗОПРОПОКСИДОМ АЛЮМИНИЯ (2015)
Исследовано влияние алюминирования на текстурные, кислотные и каталитические свойства мезопористых алюмосиликатов с упорядоченной системой мезопор. Установлено, что процедура алюминирования сопровождается встраиванием Al в алюмосиликатный материал стенок мезопор. Показано, что в реакции метилирования фенола состав продуктов на исходном (Si/Al = 12.5) и алюминированных алюмосиликатах (Si/Al = 2.2 и 0.8) одинаков, что указывает на идентичную природу активных центров. В отличие от исходного мезопористого алюмосиликата, алюминированные материалы работали без потери активности в течение 4 ч. Предположено, что причиной стабильной активности алюминированных катализаторов является генерирование дополнительных кислотных центров в результате взаимодействия обогащенного алюминием материала стенок мезопор с водой, образующейся в процессе взаимодействия фенола с метанолом.
Идентификаторы и классификаторы
Мезоструктурированные материалы с упорядоченной системой пор с диаметром 2–10 нм уже несколько десятилетий остаются в центре внимания исследователей. Интерес к этим материалам связан с их уникальными свойствами и перспективами использования в адсорбционных и каталитических процессах, а также в материаловедении для приготовления новых композитных материалов [1].
Список литературы
- Kresge Ch.T., Roth W.J. // Chem. Soc. Rev. 2013. V. 42. № 9. Р. 3663.
- Luque R., Balu A.M., Campelo J.M., Gracia M.D., Losada E., Pineda A., Romero A.A., Serrano’ Ruiz J.C. // Catalysis. 2012. V. 24. Р. 253.
- Borade R.B., Clearfield A. // Catalysis Letters. 1995. V. 31. № 2–3. Р. 267.
- Wang Y., Lang N., Tuel A. // Micropor. Mesopor. Mater. 2006. V. 93. № 1–3. Р. 46.
- Shen S.C., Kawi S. // Langmuir. 2002. V. 18. № 12. Р. 4720.
- Mokaya R., Jones W. // Chem. Commun. 1998. № 17. Р. 1839.
- Mokaya R., Jones W. // J. Mater. Chem. 1999. V. 9. №2. Р. 555.
- Mokaya R. // Chem. Commun. 2001. № 7. Р. 633.
- Mokaya R., Jones W. // Chem. Commun.1997. № 22. Р. 2185.
- Jana S.K., Kugita T., Namba S. // Applied Catalysis A: General. 2004. V. 266. № 2. Р. 245.
- Zou J.J., Xu Y., Zhang X., Wang L. // Applied Catalysis A: General. 2012. V. 421– 422. P. 79.
- Landau M.V., Dafa E., Kaliya M.L., Sen T., Herskowitz M. // Micropor. Mesopor. Mater. 2001.
V. 49. № 1–3. Р. 65. - Ющенко В.В. // Журн. Физ. Химии. 1997. Т. 71. № 4. С. 628.
- Boumaza A., Favaro L., Lédion J., Sattonnay G., Bru’ bach J.B., Berthet P., Huntz A.M., Roy P., Tétot R. // J. Solid State Chem. 2009. V. 182. № 5. Р. 1171.
- Брек Д. Цеолитовые молекулярные сита. М.: Мир. 1976.
- Фионов А.В. // Изв. РАН. Сер. хим. 2009. № 3. С. 526.
- Фионов А.В., Нехаев А.И., Щапин И.Ю., Максимов А.Л., Лунин В.В. // Журн. Физ. Химии.
- Т. 87. № 12. С. 1985.
- Santacesaria E., Grassoo D. // Applied Catalysis. 1990. V. 64. № 1. Р. 83.
- Sad M.E., Padró C.L., Apesteguía C.R. //Catalysis Today. 2008. V. 133–135. Р. 720.
- Bhattacharyya K.G., Talukdar A. K., Das P., Sivasanker S. // J. Mol. Catal. A: Chemical. 2003.
V. 197. № 1–2. Р. 255. - Trong On D., Zaidi S.M.J., Kaliaguine S. // Micropor. Mesopor. Mater. 1998. V. 22. № 1–3. Р. 211.
Выпуск
Другие статьи выпуска
Исследованы реакции озонирования бензо и дибензопроизводных пиррола, фурана и тиофена в растворе уксусной кислоты. В качестве продуктов обнаружено пероксидные соединения. Предложен механизм взаимодействия озона с приведенными гетаренами. Исследована кинетика озонолитичних реакций бензологов пятичленных ароматических гетероциклов (гетаренов). Реакция озона с гетаренами подчиняется бимолекулярному закону и имеет первый порядок по каждому из исходных реагентов. Найдены эффективные константы скорости, экспериментальные стехиометрические коэффициенты по озону.
Представлены результаты гидроконверсии гудрона с рециркуляцией непревращенного вакуумного остатка в присутствии наноразмерных частиц катализатора MoS2, синтезируемых “in situ” в углеводородной среде. Описаны изменения молекулярной структуры асфальтенов гудрона и продуктов гидроконверсии смеси гудрона с вакуумным остатком (рисайклом) в зависимости от времени пребывания асфальтенов в зоне реакции. Установлены основные особенности структурных превращений асфальтенов при проведении гидроконверсии с рециркуляцией. Сопоставлен характер изменения структурных свойств асфальтенов при варьировании различных параметров процесса – времени пребывания и температуры в реакционной среде.
Изучено влияние образующихся in situ ультрадисперсных частиц дисульфида молибдена на дисперсные свойства сырья, а также на кислотность микросферического цеолитсодержащего катализатора в процессе каталитического крекинга вакуумного дистиллята. Характер изменения выхода продуктов каталитического крекинга и группового углеводородного состава бензиновой фракции указывает на гидрирующую активность дисульфида молибдена в условиях каталитического крекинга. Показано, что модифицирование дисульфидом молибдена может быть направлено на снижение выхода легкого газойля, понижение содержания олефинов в бензиновых фракциях, уменьшение выхода водорода, а в целом дает возможность регулировать качественный и количественный состав продуктов каталитического крекинга.
Получены никель-вольфрамовые сульфидные наноразмаерные катализаторы гидрирования ароматических углеводородов (УВ) путем разложения никель-тиовольфрамовой соли-прекурсора in situ в углеводородном сырье. В качестве прекурсора использован никель-тиовольфраматный комплекс 1- бутил- 1 метилпиперидиния [BMPip]2Ni[WS4]2. Полученные in situ частицы были охарактеризованы методами рентгеновской фотоэлектронной спектроскопии и просвечивающей электронной микроскопии высокого разрешения. Показано, что полученные сульфидные Ni–Wчастицы представляют собой нанопластинки, объединенные в мультислойные агломераты; средняя длина Ni–W–S частиц 6 нм, среднее число слоев многослойной упаковке – 3. Каталитическая активность полученных катализаторов была исследована в реакциях гидрирования модельных смесей моно и бициклических ароматических углеводородов и в реакции превращения дибензотиофена в реакторе периодического действия при температуре 350°C и давлении водорода 5.0 МПа. Показана возможность гидрооблагораживания легкого газойля каталитического крекинга (ЛГКК) на исследованных катализаторах.
Исследована реакция кислородной конверсии метана в синтез газа с использованием высокоселективного катализатора на основе NdCaCoO4, определены кинетические константы. Для определения кинетических констант на узком слое катализатора массой 0.1 г реализована модель изотермического процесса получения синтез газа, выбраны варианты целевых функций и вычислительный алгоритм минимизации критерия рассогласования расчетных и экспериментальных данных. Проведено кинетическое моделирование процесса окислительной конверсии метана в изотермическом и автотермическом режимах, для изотермического режима установлено соответствие результатов расчетов экспериментальным данным.
Исследованы нефтематеринские породы Банатской депрессии (юго-восточной части Паннонского бассейна, Сербия), отложений среднего и верхнего миоцена, содержащие органическое вещество (ОВ) в относительно широком диапазоне преобразованности (от начала до поздней стадии генерации жидких углеводородов). ОВ представлено преимущественно керогеном II типа и сформировано в меняющихся окислительно-восстановительных условиях. Для этой нефтегазоносносной провинции, как для всего гипертермального Паннонского бассейна, типичны очень высокие геотермические градиенты (4.0–7.5°C/100 м) и скорости нагрева миоценовых пород (9–22°C/млн лет). С помощью корреляционного анализа согласно Spearman и Pearson тесту проведено сравнение значений измеренного и на основе максимальной палеотемпературы и геохимических параметров термической преобразованности рассчетного индекса отражательной способности витринита. Показано, что для рассчета отражательной способности витринита и определения степени термической зрелости ОВ нефтематеринских пород в гипертермальных бассейнах с высокой скоростью нагрева достоверными являются геохимические параметры, рассчитанные по составу стеранов и метилдибензотиофенов, и, как ожидалось, максимальная палеотемпература залегания.
Представлена сравнительная оценка перспектив развития технологий переработки тяжелого нефтяного сырья (ТНС) с точки зрения возможности удаления и извлечения содержащихся в нем металлов. Показано, что деметаллизация ТНС с различной эффективностью может достигаться в результате деструктивных термических процессов конверсии исходного сырья, а также недеструктивных массообменных процессов. Сольвентная деасфальтизация (СДА) отличается конструктивной простотой и технологической гибкостью и позволяет удалять асфальтены и металлы, отложения которых приводят к необратимой дезактивации катализаторов нефтепереработки. Перспективные направления деметаллизации в области деструктивного превращения сырья связаны с процессами, обеспечивающими наиболее высокую конверсию ТНС и наименьший выход непревращенного остатка, в котором концентрируются металлы сырья. В этой связи развитие и внедрение технологий переработки нефтяных остатков на основе процессов гидкрокрекинга с суспендированным слоем катализатора, термоконтактного крекинга с непрерывным сжиганием или газификацией кокса и экстракции растворителями в сверхкритических условиях создает реальные предпосылки для организации глубокой комплексной переработки тяжелых нефтей с выделением концентрата металлов.
Издательство
- Издательство
- ИНХС РАН
- Регион
- Россия, Москва
- Почтовый адрес
- 119991, ГСП-1, Москва, Ленинский проспект, 29
- Юр. адрес
- 119991, ГСП-1, Москва, Ленинский проспект, 29
- ФИО
- Максимов Антон Львович (Директор)
- E-mail адрес
- director@ips.ac.ru
- Контактный телефон
- +7 (495) 9554201
- Сайт
- http:/www.ips.ac.ru