- Le D.C., Zincir-Heywood N., Heywood M.I. Analyzing data granularity levels for insider threat detection using machine learning // IEEE Transactions on Network and Service Management, 2020. V. 17. № 1. P. 30-44.
- Bhatiaa A., Bahugunaa A.A., Tiwaria K., Haribabua K., Vishwakarmab D. A Survey on Analyzing Encrypted Network Traffic of Mobile Devices // arXiv preprint arXiv:2006.12352 [cs.CR]. 2020.
- Mamun M.S.I., Ghorbani A.A., Stakhanova N. (2016) An Entropy Based Encrypted Traffic Classifier // In: Qing S., Okamoto E., Kim K., Liu D. (eds) Information and Communications Security. ICICS 2015. Lecture Notes in Computer Science. V. 9543. Springer, Cham. DOI: 10.1007/978-3-319-29814-6_23
- Shen M., Wei M., Zhu L., Wang M. Classification of encrypted traffic with second-order markov chains and application attribute bigrams // IEEE Transactions on Information Forensics and Security. 2017. V. 12. № 8. P. 1830-1843. DOI: 10.1109/TIFS.2017.2692682 EDN: YGXJLY
- Zhang Z., Kang C., Fu P., Cao Z., Li Z., Xiong G. Metric learning with statistical features for network traffic classification // IEEE 36th International Performance Computing and Communications Conference (IPCCC), San Diego, CA. 2017. P. 1-7. DOI: 10.1109/PCCC.2017.8280467
- Yang Y., Kang C., Gou G., Li Z. Xiong G., TLS/SSL Encrypted Traffic Classification with Autoencoder and Convolutional Neural Network // IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, United Kingdom, 2018. P. 362-369. DOI: 10.1109/HPCC/SmartCity/DSS.2018.00079
- Chen Y., Zang T., Zhang Y., Zhouz Y., Wang Y. Rethinking Encrypted Traffic Classification: A Multi-Attribute Associated Fingerprint Approach // IEEE 27th International Conference on Network Protocols (ICNP), Chicago, IL, USA, 2019. P. 1-11. DOI: 10.1109/ICNP.2019.8888043
- Wang P., Chen X., Ye F., Sun Z. A survey of techniques for mobile service encrypted traffic classification using deep learning // IEEE Acces., 2019. V. 7. P. 54024-54033. DOI: 10.1109/ACCESS.2019.2912896 EDN: KMTPIY
- Tang Z., Zeng X., Sheng Y. Entropy-based feature extraction algorithm for encrypted and non-encrypted compressed traffic classification // International Journal of ICIC. 2019. V. 15. № 3. P. 845-860. DOI: 10.24507/ijicic.15.03.845
-
Obasi T.C. Encrypted Network Traffic Classification using Ensemble Learning Techniques // Doctoral dissertation, Carleton University, 2020. DOI: 10.22215/etd/2020-14171
-
Choudhury P., Kumar K.P., Nandi S., Athithan G. An empirical approach towards characterization of encrypted and unencrypted VoIP traffic // Multimedia Tools and Applications. 2020. V. 79. № 1-2. P. 603-631. DOI: 10.1007/s11042-019-08088-w
-
Yao Z., Ge J., Wu Y., Lin X., He R., Ma Y. Encrypted traffic classification based on Gaussian mixture models and Hidden Markov Models // Journal of Network and Computer Applications. 2020. V. 166. P. 102711. DOI: 10.1016/j.jnca.2020.102711
-
Baldini G., Hernandez-Ramos J.L., Nowak S., Neisse R., Nowak M. Mitigation of Privacy Threats due to Encrypted Traffic Analysis through a Policy-Based Framework and MUD Profiles // Symmetry. 2020. V. 12. № 9. P. 1576. DOI: 10.3390/sym12091576
-
Shen M., Liu Y., Zhu L., Xu K., Du X., Guizani N. Optimizing Feature Selection for Efficient Encrypted Traffic Classification: A Systematic Approach // IEEE Network. 2020. V. 34. № 4. P. 20-27. DOI: 10.1109/MNET.011.1900366
-
Panchenko A., Lanze F., Pennekamp J., Engel T., Zinnen A., Henze M., Wehrle K. Website Fingerprinting at Internet Scale // Network and Distributed System Security Symp. 2016. P. 21-24. DOI: 10.14722/ndss.2016.23477
-
Wei S., Ding Y., Han X. TDSC: Two-stage DDoS detection and defense system based on clustering // In 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). 2017. P. 101-102. DOI: 10.1109/DSN-W.2017.11
-
Sahoo K.S., Tripathy B.K., Naik K., Ramasubbareddy S., Balusamy B., Khari M., Burgos D. An evolutionary SVM model for DDOS attack detection in software defined networks // IEEE Access. 2020. V. 8. P. 132502-132513. DOI: 10.1109/ACCESS.2020.3009733
-
Grechishnikov E.V., Dobryshin M.M., Kochedykov S.S., Novoselcev V.I. Algorithmic model of functioning of the system to detect and counter cyber attacks on virtual private network // Journal of Physics: Conference Series. 2019. V. 1203. № 1. P. 012064. DOI: 10.1088/1742-6596/1203/1/012064 EDN: MKRKWX
-
Добрышин М.М. Предложение по совершенствованию систем противодействия DDoS-атакам // Телекоммуникации. 2018. № 10. С. 32-38. eLIBRARY ID: 36284311. EDN: YLFKDJ
-
Добрышин М.М., Спирин А.А., Лактионов А.Д. Предложения по раннему обнаружению деструктивных воздействий Botnet на компьютерные сети связи. // Телекоммуникации. 2020. №. 12. С. 25-29. eLIBRARY ID: 44404522. EDN: ZNHEWW
-
Zhu L., Tang X., Shen M., Du X., Guizani M. Privacy-preserving DDoS attack detection using cross-domain traffic in software defined networks // IEEE Journal on Selected Areas in Communications. 2018. V. 36. № 3. P. 628-643. DOI: 10.1109/JSAC.2018.2815442
-
Wang F., Quach T.T., Wheeler J., Aimone J.B., James, C.D. Sparse coding for n-gram feature extraction and training for file fragment classification // IEEE Transactions on Information Forensics and Security. 2018. V. 13. № 10. P. 2553-2562. DOI: 10.1109/TIFS.2018.2823697
-
Karampidis K., Papadourakis G. File type identification-computational intelligence for digital forensics // Journal of Digital Forensics, Security and Law. 2017. V. 12. № 2. P. 6. DOI: 10.15394/jdfsl.2017.1472
-
Karampidis K., Kavallieratou E., Papadourakis G. Comparison of Classification Algorithms for File Type Detection. A Digital Forensics Perspective // Polybits. 2017. V. 56. P. 15-20. DOI: 10.17562/PB-56-2
-
Kozachok A.V. Development of a Heuristic Mechanism for Detection of Malware Programs Based on Hidden Markov Models // Automatic Control and Computer Sciences. 2018. V. 52. № 8. P. 1117-1123. DOI: 10.3103/S0146411618080345 EDN: JASAXN
-
Srinivas M., Nayak A., Bhatt A. Forged File Detection and Steganographic content Identification (FFDASCI) using Deep Learning Techniques // In CLEF (Working Notes). 2019. http://ceur-ws.org/Vol-2380/paper_142.pdf.
-
Konaray S.K., Toprak A., Pek G.M., Akçekoce H., Kılınç D. Detecting File Types Using Machine Learning Algorithms // 2019 Innovations in Intelligent Systems and Applications Conference (ASYU). 2019. P. 1-4. DOI: 10.1109/ASYU48272.2019.8946393
-
Casino F., Choo K.K.R., Patsakis C. Hedge: Efficient traffic classification of encrypted and compressed packets // IEEE Transactions on Information Forensics and Security. 2019. V. 14. № 11. P. 2916-2926. DOI: 10.1109/TIFS.2019.2911156
-
De Gaspari F., Hitaj D., Pagnotta G., De Carli L., Mancini L.V. EnCoD: Distinguishing Compressed and Encrypted File Fragments // International Conference on Network and System Security, Springer, Cham. 2020. P. 42-62. DOI: 10.1007/978-3-030-65745-1_3
-
Mousavi S.S. Detecting Disk Sectors Data Types Using Hidden Markov Model // 17th International ISC Conference on Information Security and Cryptology (ISCISC). 2020. P. 60-64. DOI: 10.1109/ISCISC51277.2020.9261906
-
Cheng L., Liu F., Yao D. Enterprise data breach: causes, challenges, prevention, and future directions // Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2017. V. 7. № 5. C. e1211.
-
Doroud H. et al. Speeding-up dpi traffic classification with chaining // IEEE Global Communications Conference (GLOBECOM). IEEE. 2018. C. 1-6.
-
Hahn D., Apthorpe N., Feamster N. Detecting compressed cleartext traffic from consumer internet of things devices // arXiv preprint arXiv:1805.02722. 2018.
-
Wood D., Apthorpe N., Feamster N. Cleartext data transmissions in consumer iot medical devices // Proceedings of the 2017 Workshop on Internet of Things Security and Privacy. 2017. C. 7-12.
-
Scaife N., Carter H., Traynor P., Butler K. R. Cryptolock (and drop it): stopping ransomware attacks on user data // IEEE 36th International Conference on Distributed Computing Systems (ICDCS). 2016. P. 303-312. DOI: 10.1109/ICDCS.2016.46 EDN: XUHDCT
-
Raff E., Zak R., Cox R., Sylvester J., Yacci P., Ward R., Nicholas C. An investigation of byte n-gram features for malware classification // Journal of Computer Virology and Hacking Tehniques. 2018. V. 14. № 1. P. 1-20. DOI: 10.1007/s11416-016-0283-1
-
Козачок А.В., Спирин А.А. Алгоритм классификации псевдослучайных последовательностей // Вестник ВГУ. Серия: Системный анализ и информационные технологии. 2020. № 1. С. 87-98. DOI: 10.17308/sait.2020.1/2595 EDN: GSAEJE
-
Козачок А.В., Спирин А.А., Голембиовская О.М. Алгоритм классификации псевдослучайных последовательностей на основе построения случайного леса // Доклады Томского государственного университета систем управления и радиоэлектроники. 2020. Т. 23. № 3. С. 55-60. EDN: QQWLFC
-
Kozachok A.V., Kozachok V.I. Construction and evaluation of the new heuristic malware detection mechanism based on executable files static analysis // Journal of Computer Virology and Hacking Techniques, 2018. V. 14. № 3. P. 225-231. DOI: 10.1007/s11416-017-0309-3 EDN: WAYZJM