1. Brucker, P., 2007. Scheduling Algorithms. Springer Berlin, Heidelberg. DOI: 10.1007/978-3-540-69516-5
2. Dorigo, M., Birattari, M., and Stutzle, T., 2006. Ant Colony Optimization. IEEE Computational Intelligence Magazine, 1(4), pp. 28-39.
3. Feo, T. A., and Resende, M. G. C., 1995. Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization, 6, pp. 109-133. DOI: 10.1007/BF01096763 EDN: NTMXFR
4. Festa, P., Resende, M. G. C., 2009. An Annotated Bibliography of GRASP - Part I: Algorithms and Applications. Journal of Global Optimization, 43(2-3), pp. 209-235. DOI: 10.1111/j.1475-3995.2009.00663.x
5. Garey, M. R., and Johnson, D. S., 1983. Computers and Intractability: A Guide to the Theory of NP-Completeness. Journal of Symbolic Logic. 48 (2), pp. 498-500.
6. Gendreau, M., Potvin, J.-Y., 2018. Handbook of Metaheuristics. Springer Cham. DOI: 10.1007/978-3-319-91086-4
7. Glover, F., and Laguna, M., 1997. Tabu Search. Springer New York, NY. DOI: 10.1007/978-1-4615-6089-0
8. Goldberg, D.E., Holland, J.H., 1988. Genetic Algorithms and Machine Learning. Machine Learning 3, 95-99. :1022602019183. DOI: 10.1023/A
9. Gorodetsky, В. I., Skobelev, P. O., 2017. Multi-agent Technologies for Industrial Applications: Reality and Perspective, Proc. technologies for industrial applications: reality and perspective, Proc. SPIIRAN, 2017, issue 55, 11-45. DOI: 10.15622/sp.55.1
10. Jennings, N. R., Sycara, K., and Wooldridge, M., 1998. A Roadmap of Agent Research and Development. Autonomous Agents and Multi-Agent Systems, 1(1), pp. 7-38. :1010090405266. DOI: 10.1023/A EDN: AJYLMD
11. Kim, Y. and Matson, E. T., 2016. A realistic decision making for task allocation in heterogeneous multi-agent systems. Procedia Computer Science, vol. 94, pp. 386-391. DOI: 10.1016/j.procs.2016.08.059
12. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and Shmoys, D. B., 1993. Sequencing and Scheduling: Algorithms and Complexity. Handbooks in Operations Research and Management Science. Graves, S.C., Rinnooy Kan, A.H.G., and Zipkin, P.H. (Eds.), Vol. 4., Logistics of Production and Inventory, North-Holland, Amsterdam, the Netherlands, pp. 445-522.
13. Lazarev, A. A., Gafarov, E. R., 2011. Scheduling Theory. Problems and Algorithms [in Russian]. Lomonosov Moscow State University, Moscow.
14. Leitao, P., 2009. Agent-based Distributed Manufacturing Control: A State-of-the-art Survey. Engineering Applications of Artificial Intelligence, 22(7), pp. 979-991. DOI: 10.1016/j.engappai.2008.09.005
15. Paprocka, I., Kempa, W.M., Kalinowski, K., Grabowik, C., Mikhaylov, A., Nedelcu, D. et al., 2014. A production scheduling model with maintenance. Advanced materials research, vol. 1036, Trans Tech Publications Ltd, Silesian University of Technology, Institute of Mathematics, 23 Kaszubska Str, Gliwice, 44-100, Poland (2014), pp. 885-890,. DOI: 10.4028/www.scientific.net/AMR.1036.885
16. Resende, M. G. C., Ribeiro, C. C., 2016. Optimization by GRASP: Greedy Randomized Adaptive Search Procedures. Springer New York, NY. DOI: 10.1007/978-1-4939-6530-4
17. Serrano-Ruiz, J.C., Mula, J., Poler, R., 2021. Smart manufacturing scheduling: A literature review. Journal of Manufacturing Systems, 61, pp. 265-287,. DOI: 10.1016/J.JMSY.2021.09.011 EDN: CZYECD
18. Skobelev, P. O. et. al., 2010. Development of a multi-agent system for production planning, forecasting and modeling [In Russian]. Mechatronics, Automation, Control, 22-30.
19. Smith, S. F., Fox, M. S., and Ow, P. S., 1986. Constructing and Maintaining Detailed Production Plans: Investigations into the Development of Knowledge-Based Factory Scheduling Systems. AI Magazine, 9(4), pp. 45-57. DOI: 10.1609/aimag.v7i4.558
20. Tsetlin, M. L., 1969. Studies in Automata Theory and Simulation of Biological Systems [in Russian]. Nauka, Moscow.
21. Van Laarhoven, P. J. M., Aarts, E. H. L., and Lenstra, J. K., 1992. Job Shop Scheduling by Simulated Annealing. Operations Research, 40(1), pp. 113-125. DOI: 10.1287/opre.40.1.113
22. Varshavskii, V. I., 1973. Collective Behavior of Automata [in Russian], Nauka, Moscow (1973).
23. Velastegui, R., Poler, R., Díaz-Madroñero, M., 2025. Revolutionising industrial operations: The synergy of multiagent robotic systems and blockchain technology in operations planning and control, Expert Systems with Applications, Vol. 269. DOI: 10.1016/j.eswa.2025.126460 EDN: PSOYKL
24. Wang, X.-H. and Ji, H.-B., 2012. Leader-follower consensus for a class of non-linear multi-agent systems. International Journal of Control, Automationand Systems, vol. 10, no. 1, pp. 27-35. DOI: 10.1007/s12555-012-0104-3
25. Wooldridge M., 2009. An Introduction to Multiagent Systems. John Wiley & Sons Ltd,. ISBN: 978-0-470-51946-2
26. Yu, W., Chen, G., Cao, M. and Kurths, J., 2010. Second-Order Consensus for Multiagent Systems With Directed Topologies and Nonlinear Dynamics. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40, 3, pp. 881-891. DOI: 10.1109/TSMCB.2009.2031624