1. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Eng J Med. 2001;344(22):1688-1700. DOI: 10.1056/NEJM200105313442207
2. Zoccolella S, Santamato A, Lamberti P. Current and emerging treatments for amyotrophic lateral sclerosis. Neuropsychiatr Dis Treat. 2009;5(7):577-595. DOI: 10.2147/ndt.s7788
3. Morris HR, Waite AJ, Williams NM, et al. Recent advances in the genetics of the ALS-FTLD complex. Curr Neurol Neurosci. 2012;12(3):243-250. DOI: 10.1007/s11910-012-0268-5
4. Al-Chalabi A, Fang F, Hanby MF, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data. J Neurol Neurosurg Psychiatry. 2010;81(12):1324-1326. DOI: 10.1136/jnnp.2010.207464
5. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683-692. DOI: 10.1016/j.cell.2007.01.029
6. Fraga M, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Nat Acad Sci. 2005;102(30):10604-10609. DOI: 10.1073/pnas.0500398102
7. Evans MA, Walsh K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol Rev. 2023;103(1):649-716. DOI: 10.1152/phys-rev.00004.2022
8. Loh PR, Genovese G, Handsaker RE, et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature. 2018;559:350-355. DOI: 10.1038/s41586-018-0321-x
9. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488-2498. DOI: 10.1056/NEJMoa1408617
10. Martin LJ, Wong M. Aberrant regulation of DNA methylation in amyotrophic lateral sclerosis: a new target of disease mechanisms. Neurotherapeutics. 2013;10(4):722-733. DOI: 10.1007/s13311-013-0205-6
11. Yun J, Youn YC, Kim HR. Association between clonal hematopoiesis of indeterminate potential and brain p-Amyloid deposition in korean patients with cognitive impairment. Ann Lab Med. 2024;44(6):576-580. DOI: 10.3343/alm.2024.0086
12. Khan AW, Farooq M, Hwang MJ, et al. Autoimmune neuroinflammatory diseases: role of interleukins.Int J Mol Sci. 2023;24(9):60-79. DOI: 10.3390/ijms24097960
13. Azad A, Gokmen OR, Uysal H, et al. Autophagy dysregulation plays a crucial role in regulatory T-cell loss and neuroinflammation in amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler Frontotemporal Degener. 2024;25(3-4):336-344. DOI: 10.1080/21678421.2023.2273365
14. Gustafson MP, Staff NP, Bornschlegl S, et al.Comprehensive immune profiling reveals substantial immune system alterations in a subset of patients with amyotrophic lateral sclerosis. PLoS One. 2017;12(7):e0182002. DOI: 10.1371/journal.pone.0182002
15. Yazdani S, Seitz C, Cui C, et al. T cell responses at diagnosis of amyotrophic lateral sclerosis predict disease progression. Nat Commun. 2022;13(1):6733. DOI: 10.1038/s41467-022-34526-9
16. Shi K, Li H, Chang T, et al. Bone marrow hematopoiesis drives multiple sclerosis progression. Cell. 2022;185(13):2234-2247. DOI: 10.1016/j.cell.2022.05.020
17. Bryukhovetskiy AS, Grivtsova LY, Sharma HS. Ultra early molecular biologic diagnosis of malignant and neuro-degenerative diseases by the immunospecific profiles of the protein’s markers of the surface of the mobilized autologous hematopoietic stem cells. Prog Brain Res. 2021;266:75-95. DOI: 10.1016/bs.pbr.2021.06.002
18. Proskurina AS, Gvozdeva TS, Alyamkina EA. Results of multicenter double-blind placebo-controlled phase II clinical trial of Panagen preparation to evaluate its leukostimulatory activity and formation of the adaptive immune response in patients with stage II-IV breast cancer. BMC Cancer. 2015;15:122. DOI: 10.1186/s12885-015-1142-z
19. Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014;11:98. DOI: 10.1186/1742-2094-11-98
20. Kempuraj D, Thangavel R, Selvakumar GP. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017;11:216. DOI: 10.3389/fncel.2017.00216
21. Zaccai S, Nemirovsky A, Lerner L, et al. CD4 T-cell aging exacerbates neuroinflammation in a late-onset mouse model of amyotrophic lateral sclerosis. J Neuroinflammation. 2024;21(1):17. DOI: 10.1186/s12974-023-03007-1
22. Beland LC, Markovinovic A, Jakovac H, et al. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Commun. 2020;2(2):1-24. DOI: 10.1093/braincomms/fcaa124
23. Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis: cellular mechanisms and therapeutic implications. Front Immunol. 2017;8:1005. DOI: 10.3389/fimmu.2017.01005
24. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139(2):136-153. DOI: 10.1111/jnc.13607
25. Murdock BJ, Zhou T, Kashlan SR, et al. Correlation of peripheral immunity with rapid amyotrophic lateral sclerosis progression. Neurol. 2017;74(12):1446-1454. DOI: 10.1001/jamaneurol.2017.2255
26. Zhang R, Gascon R, Miller RG, et al. Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2005;159:215-224. DOI: 10.1016/j.jneuroim.2004.10.009
27. McCauley ME, Baloh RH. Inflammation in ALS/ FTD pathogenesis. Acta Neuropathol. 2019;137(5):715-730. DOI: 10.1007/s00401-018-1933-9
28. Lu CH, Allen K, Oei F, et al. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflam. 2016;3:e244. DOI: 10.1212/NXI.0000000000000244
29. Ren H, Liu Q. Skull and vertebral bone marrow in central nervous system inflammation. Fundam Res. 2023;4(2): 246-250. DOI: 10.1016/j.fmre.2023.01.012
30. Hassanein NM, Alcancia F, Perkinson KR, et al. Distinct expression patterns of CD123 and CD34 on normal bone marrow B-cell precursors (“hematogones”) and B lymphoblastic leukemia blasts. Am J Clin Pathol. 2009;132(4):573-580. DOI: 10.1309/AJCPO4DS0GTLSOEI
31. Mani R, Goswami S, Gopalakrishnan B, et al. The interleukin-3 receptor CD123 targeted SL-401 mediates potent cytotoxic activity against CD34+CD123+ cells from acute myeloid leukemia/myelodysplastic syndrome patients and healthy donors. Haematologica. 2018;103(8):1288-1297. DOI: 10.3324/haematol.2018.188193
32. Villadangos JA, Young L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity. 2008;29(3):352-361. DOI: 10.1016/j.immuni.2008.09.002
33. Grouard G, Rissoan MC, Filgueira L, et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med. 1997;185(6):1101-1111. DOI: 10.1084/jem.185.6.1101
34. Rani L, Kumar A, Karhade J, et al. IL-3 regulates the differentiation of pathogenic Th17 cells. Eur J Immunol. 2022;52(11):1842-1858. DOI: 10.1002/eji.202149674
35. Ullrich KA, Derdau J, Baltes C, et al. IL-3 receptor signalling suppresses chronic intestinal inflammation by controlling mechanobiology and tissue egress of regulatory T cells. Gut. 2023;72(11):2081-2094. DOI: 10.1136/gutjnl-2023-329818
36. McAlpine CS, Park J, Griciuc A, et al. Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature. 2021;595(7869):701-706. DOI: 10.1038/s41586-021-03734-6
37. Kiss MG, Mindur JE, Yates AG, et al.Interleukin-3 coordinates glial-peripheral immune crosstalk to incite multiple sclerosis. Immunity. 2023;56(7):1502-1514. DOI: 10.1016/j.immuni.2023.04.013
38. Look AT, Ashmun RA, Shapiro LH, Peiper SC. Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase. N J Clin Invest. 1989;83(4): 1299-1307. DOI: 10.1172/JCI114015
39. Gaipa G, Coustan-Smith E, Todisco E, et al. Characterization of CD34+, CD13+, CD33- cells, a rare subset of immature human hematopoietic cells. Haematologica. 2002;87(4):347-356.
40. Avigdor A, Goichberg P, Shivtiel S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 2004;103(8):2981-2989. DOI: 10.1182/blood-2003-10-3611
41. Zoller M. CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Front Immunol. 2015;6:235. DOI: 10.3389/fimmu.2015.00235
42. Liu X, Xue H, Wirdefeldt K, et al. Clonal hemato-poiesis of indeterminate potential and risk of neurode-generative diseases. J Intern Med. 2024;296(4):327-335. DOI: 10.1111/joim.20001
43. Bouzid H, Belk JA, Jan M, et al. Clonal hematopoiesis is associated with protection from Alzheimer’s disease. Nat Med. 2023;29(7):1662-1670.