Вирусы герпеса человека 6А и 6B (ВГЧ-6А и ВГЧ-6В) являются убиквитарными патогенами. Спектр клинических проявлений инфекций, вызванных ВГЧ-6А и ВГЧ-6В, достаточно широк. Современные представления о ВГЧ-6А и ВГЧ-6В, включая их хромосомноинтегрированную форму, являются основой для создания системы эпидемиологического мониторинга ассоциированных с данными вирусами инфекций. В статье затрагиваются вопросы эпидемиологии и диагностики инфекций, вызванных ВГЧ-6А и ВГЧ-6В, в том чиcле у
пациентов после трансплантации солидных органов и аллогенных гемопоэтических стволовых клеток.
Идентификаторы и классификаторы
В 1986 г. S.Z. Salahuddin и соавт. впервые обнаружили вирус герпеса человека 6-го типа (ВГЧ-6) у взрослых пациентов с лимфопролиферативными заболеваниями и инфекцией, вызванной вирусом иммунодефицита человека (ВИЧ).
Первоначально «новый» вирус был выявлен в B-лимфоцитах иммунокомпрометированных взрослых больных, поэтому и был назван B-лимфотропным вирусом человека
(HBLV – human B-lymphotropic virus).
Список литературы
- Salahuddin S.Z., Ablashi D.V., Markham P.D., Josephs S.F., Sturzenegger S., Kaplan M., et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science. 1986;
234(4776): 596–601. https://doi.org/10.1126/science.2876520 - Yamanishi K., Okuno T., Shiraki K., Takahashi M., Kondo T., Asano Y., et al. Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet. 1988; 331(8594): 1065–7. https:// doi.org/10.1016/s0140-6736(88)91893-4
- Abdel-Haq N.M., Asmar B.I. Human herpesvirus 6 (HHV6) infection.Indian J. Pediatr. 2004; 71(1): 89–96. https://doi.org/10.1007/ BF02725664
- Ablashi D.V., Salahuddin S.Z., Josephs S.F., Imam F., Lusso P., Gallo R.C., et al. HBLV (or HHV-6) in human cell lines. Nature. 1987; 329(6136): 207. https://doi.org/10.1038/329207a0
- Adams M.J., Carstens E.B. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012). Arch. Virol. 2012; 157(7): 1411–22. https://doi.org/10.1007/ s00705-012-1299-6
- Braun D.K., Dominguez G., Pellett P.E. Human herpesvirus 6. Clin. Microbiol. Rev. 1997; 10(3): 521–67. https://doi.org/10.1128/ CMR.10.3.521
- International Committee on Taxonomy of Viruses (ICTV). Taxonomic Proposals from the Herpesviridae study group. Available at: https://ictv.global/filebrowser/download/1329
- King O., Al Khalili Y. Herpes virus type 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.
- Morissette G., Flamand L. Herpesviruses and chromosomal integration. J. Virol. 2010; 84(23): 12100–9. https://doi.org/10.1128/ JVI.01169-10
- Никольский М.А., Голубцова В.С. Хромосомноинтегрированный вирус герпеса человека 6 типа. Инфекция и иммунитет. 2015; 5(1): 7–14. https://doi.org/10.15789/2220-7619-2015-1-7-14
- Yao K., Crawford J.R., Komaroff A.L., Ablashi D.V., Jacobson S. Review part 2: Human herpesvirus-6 in central nervous system diseases. J. Med. Virol. 2010; 82(10): 1669–78. https://doi.org/10.1002/jmv.21861
- Tang H., Serada S., Kawabata A., Ota M., Hayashi E., Naka T., et al. CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc. Natl Acad. Sci. USA. 2013; 110(22): 9096–9. https://
doi.org/10.1073/pnas.1305187110 Santoro F., Kennedy P.E., Locatelli G., Malnati M.S., Berger
E.A., Lusso P. CD46 is a cellular receptor for human herpesvirus - Cell. 1999; 99(7): 817–27. https://doi.org/10.1016/s0092- 8674(00)81678-5
- Ward K.N., Hill J.A., Hubacek P., de la Camara R., Crocchiolo R., Einsele H., et al. Guidelines from the 2017 European Conference on Infections in Leukaemia for management of HHV-6 infection in patients with hematologic malignancies and after hematopoietic
stem cell transplantation. Haematologica. 2019; 104(11): 2155–63. https://doi.org/10.3324/haematol.2019.223073 - Agut H., Bonnafous P., Gautheret-Dejean A. Update on infections with human herpesviruses 6A, 6B, and 7. Med. Mal. Infect. 2017; 47(2): 83–91. https://doi.org/10.1016/j.medmal.2016.09.004
- De Bolle L., Naesens L., De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin. Microbiol. Rev. 2005;18(1): 217–45. https://doi.org/10.1128/CMR.18.1.217-245.2005
- Krueger G.R., Wassermann K., De Clerck L.S., Stevens W.J., Bourgeois N., Ablashi D.V., et al. Latent herpesvirus-6 in salivary and bronchial glands. Lancet. 1990; 336(8725): 1255–6. https://doi. org/10.1016/0140-6736(90)92874-h
- Hall C.B., Long C.E., Schnabel K.C., Caserta M.T., McIntyre K.M., Costanzo M.A., et al. Human herpesvirus-6 infection in children. A prospective study of complications and reactivation. N. Engl. J. Med. 1994; 331(7): 432–8. https://doi.org/10.1056/NEJM199408183310703
- Pruksananonda P., Hall C.B., Insel R.A., McIntyre K., Pellett P.E., Long C.E., et al. Primary human herpesvirus 6 infection in young children. N. Engl. J. Med. 1992; 326(22): 1445–50. https://doi.
org/10.1056/NEJM199205283262201 - Новосад Е.В. Инфекционный мононуклеоз, ассоциированный с
вирусом герпеса 6 типа: Автореф. дисс. … канд. мед. наук. М.; 2010. https://elibrary.ru/qgznxv - Демина О.И., Тихомиров Д.С., Чеботарёва Т.А., Мазанкова Л.Н., Туполева Т.А. Клиническая значимость вирусологических методов верификации этиологии инфекционного мононуклеоза. Детские инфекции. 2020; 19(2): 29–37. https://doi.org/10.22627/2072-8107-2020-19-2-29-37 https://elibrary.ru/eqbykn
- Ashrafpoor G., Andréoletti L., Bruneval P., Macron L., Azarine A., Lepillier A., et al. Fulminant human herpesvirus 6 myocarditis in an immunocompetent adult: role of cardiac magnetic resonance in a multidisciplinary approach. Circulation. 2013; 128(23): e445–7.
https://doi.org/10.1161/CIRCULATIONAHA.113.001801 - Charnot-Katsikas A., Baewer D., Cook L., David M.Z. Fulminant hepatic failure attributed to infection with human herpesvirus 6 (HHV-6) in an immunocompetent woman: A case report and review of the literature. J. Clin. Virol. 2016; 75: 27–32. https://doi. org/10.1016/j.jcv.2015.12.002
- Caselli E., Zatelli M.C., Rizzo R., Benedetti S., Martorelli D., Trasforini G., et al. Virologic and immunologic evidence supporting an association between HHV-6 and Hashimoto’s thyroiditis. PLoS Pathog. 2012; 8(10): e1002951. https://doi.org/10.1371/journal.ppat.1002951
- Gentile I., Talamo M., Borgia G. Is the drug-induced hypersensitivity syndrome (DIHS) due to human herpesvirus 6 infection or to allergy-mediated viral reactivation? Report of a case and literature review. BMC Infect. Dis. 2010; 10: 49. https://doi.org/10.1186/1471- 2334-10-49
- Peppercorn A.F., Miller M.B., Fitzgerald D., Weber D.J., Groben P.A., Cairns B.A. High-level human herpesvirus-6 viremia associated with onset of Stevens-Johnson syndrome: report of
two cases. J. Burn. Care Res. 2010; 31(2): 365–8. https://doi. org/10.1097/BCR.0b013e3181d0f48b - Lundström W., Gustafsson R. Human herpesvirus 6A is a risk factor for multiple sclerosis. Front. Immunol. 2022; 13: 840753. https:// doi.org/10.3389/fimmu.2022.840753
- Tao C., Simpson-Yap S., Taylor B., Blizzard L., Lucas R., Ponsonby A.L., et al. Markers of Epstein-Barr virus and human herpesvirus- 6 infection and multiple sclerosis clinical progression. Mult.
Scler. Relat. Disord. 2022; 59: 103561. https://doi.org/10.1016/j. msard.2022.103561 - Потекаев Н.Н., Марданлы С.Г., Фриго Н.В., Жукова О.В., Ротанов С.В., Марданлы С.С. и др. Серологическая диагностика герпесвирусных инфекций. Орехово-Зуево; 2018. https://elibrary. ru/qwzimp
- Анохин В.А., Сабитова А.М. Инфекции, вызванные вируса-ми герпеса 6-го типа: современные особенности. Российский вестник перинатологии и педиатрии. 2016; 61(5): 127–31.https://doi.org/10.21508/1027-4065-2016-61-5-127-131 https://elibrary. ru/wxtvjf
- Миронкова Е.А., Демкин В.В., Слепова О.С., Садохина Т.С., Ма-каров П.В., Кугушева А.Э. Диагностика и роль ВГЧ-6 инфекции при кератопластике высокого риска. Российский офтальмологический журнал. 2012; 5(3): 30–3. https://elibrary.ru/qclmzx
- Кричевская Г.И. Роль вируса герпеса человека 6 типа (ВГЧ-6)
в общей патологии и при заболеваниях глаз. Российский офтальмологический
журнал. 2016; 9(1): 98–104. https://elibrary.ru/vwzuht - Ljungman P., Singh N. Human herpesvirus-6 infection in solid organ and stem cell transplant recipients. J. Clin. Virol. 2006; 37(Suppl.1): S87–91. https://doi.org/10.1016/S1386-6532(06)70018-X 34. Razonable R.R., Paya C.V. The impact of human herpesvirus-6 and-7 infection on the outcome of liver transplantation. Liver Transpl. 2002; 8(8): 651 https://doi.org/10.1053/jlts.2002.34966
- Potenza L., Luppi M., Barozzi P., Rossi G., Cocchi S., Codeluppi M., et al. HHV-6A in syncytial giant-cell hepatitis. N. Engl. J. Med. 2008; 359(6): 593–602. https://doi.org/10.1056/NEJMoa074479
- Rogers J., Rohal S., Carrigan D.R., Kusne S., Knox K.K., Gayowski T., et al. Human herpesvirus-6 in liver transplant recipients: role in pathogenesis of fungal infections, neurologic complications, and outcome. Transplantation. 2000; 69(12): 2566–73. https://doi. org/10.1097/00007890-200006270-00016
- Dockrell D.H., Mendez J.C., Jones M., Harmsen W.S., Ilstrup D.M., Smith T.F., et al. Human herpesvirus 6 seronegativity before transplantation predicts the occurrence of fungal infection in liver transplant recipients. Transplantation. 1999; 67(3): 399–403. https://doi. org/10.1097/00007890-199902150-00010
- Yasukawa M., Inoue Y., Ohminami H., Terada K., Fujita S. Apoptosis of CD4+ T lymphocytes in human herpesvirus-6 infection. J. Gen. Virol. 1998; 79(Pt. 1): 143–7. https://doi.org/10.1099/0022-
1317-79-1-143 - Lusso P. HHV-6 and the immune system: mechanisms of immunomodulation and viral escape. J. Clin. Virol. 2006; 37(Suppl. 1): S4–10. https://doi.org/10.1016/S1386-6532(06)70004-X
- Wang F., Yao K., Yin Q.Z., Zhou F., Ding C.L., Peng G.Y., et al. Human herpesvirus-6-specific interleukin 10-producing CD4+T cells suppress the CD4+ T-cell response in infected individuals.
Microbiol. Immunol. 2006; 50(10): 787–803. https://doi.org/10.1111/j.1348-0421.2006.tb03855.x - So T., Lee S.W., Croft M. Immune regulation and control of regulatory T cells by OX40 and 4-1BB. Cytokine Growth Factor Rev. 2008; 19(3-4): 253–62. https://doi.org/10.1016/j.cytogfr.2008.04.003
- Tsukada N., Akiba H., Kobata T., Aizawa Y., Yagita H., Okumura K. Blockade of CD134 (OX40)-CD134L interaction ameliorates lethal acute graft-versus-host disease in a murine model of allogeneic bone marrow transplantation. Blood. 2000; 95(7): 2434–9.
- Blazar B.R., Sharpe A.H., Chen A.I., Panoskaltsis-Mortari A., Lees C., Akiba H., et al. Ligation of OX40 (CD134) regulates graftversus-host disease (GVHD) and graft rejection in allogeneic bone
marrow transplant recipients. Blood. 2003; 101(9): 3741–8. https:// doi.org/10.1182/blood-2002-10-3048 - de Pagter P.J., Schuurman R., Meijer E., van Baarle D., Sanders E.A., Boelens J.J. Human herpesvirus type 6 reactivation after haematopoietic stem cell transplantation. J. Clin. Virol. 2008; 43(4): 361–6. https://doi.org/10.1016/j.jcv.2008.08.008
- Мелёхина Е.В., Музыка А.Д., Калугина М.Ю., Горелов А.В., Чугунова О.Л. Современные представления об инфекции, вы-званной вирусом герпеса человека 6 типа. Архивъ внутренней медицины. 2016; 6(1): 13–9. https://doi.org/10.20514/2226-6704- 2016-6-1-13-19 https://elibrary.ru/toroaq
- Государственный реестр лекарственных средств. Ган-цикловир. Available at: https://grls.minzdrav.gov.ru/GRLS. aspx RegNumber=&MnnR=Ганцикловир&lf=&TradeNmR=&
OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=0®type= 1%2c6&pageSize=10&order=Registered&orderType=desc-&pageNum=1 - Никольский М.А., Вязовая А.А., Ведерников В.Е., Нарвская О.В., Лиознов Д.А., Смирнова Н.Н. и др. Молекулярно-биологическая характеристика вируса герпеса человека 6-го типа у пациентов с различными вариантами течения заболевания. Педиатрия.
Журнал им. Г.Н. Сперанского. 2019; 98(1): 53–6. https://doi. org/10.24110/0031-403X-2019-981-53-56 https://elibrary.ru/vrlulx 48. Tremblay C. Virology, pathogenesis, and epidemiology of human herpesvirus 6 infection; 2016. Available at: https://www.uptodate.
com/contents/virology-pathogenesis-and-epidemiology-of-human-herpesvirus-6-infection - Kimberlin D.W., Brady M.T., Jackson M.A., Long S.S., eds. Humanherpesvirus 6 (including roseola) and 7. In: Red Book: 2015 Report of the Committee on Infectious Diseases. Elk Grove Village, IL: American Academy of Pediatrics; 2015.
- Freitas R.B., Monteiro T.A., Linhares A.C. Outbreaks of human-herpes virus 6 (HHV-6) infection in day-care centers in Belém, Pará, Brazil. Rev. Inst. Med. Trop. Sao Paulo. 2000; 42(6): 305–11.
https://doi.org/10.1590/s0036-46652000000600002 51. Wang X., Patel S.A., Haddadin M., Cerny J. Post-allogeneic hematopoieticstem cell transplantation viral reactivations and viremias:
a focused review on human herpesvirus-6, BK virus and adenovirus. Ther. Adv. Infect. Dis. 2021; 8: 20499361211018027. https:// doi.org/10.1177/20499361211018027 - Caserta M.T. 207 - Human Herpesviruses 6 and 7 (Roseola, Exanthem Subitum). In: Long S.S., Prober C.G., Fischer M., eds. Principles and Practice of Pediatric Infectious Diseases (Fifth Edition).
Elsevier; 2018: 1081–8.e4. https://doi.org/10.1016/B978-1-4377- 2702-9.00209-9 - Домонова Э.А., Сильвейстрова О.Ю., Гоптарь И.А., Куле- шов К.В., Пасхина И.Н., Никифорова А.В. и др. Первый случай выявления и лабораторного подтверждения наследственной передачи хромосомноинтегрированного Human betaherpesvirus
6А в Российской Федерации. Инфекционные болезни. 2019; 17(3): 5–14. https://doi.org/10.20953/1729-9225-2019-3-5-14 https://elibrary.ru/ipbtel - Flamand L. Chromosomal integration by human herpesviruses 6A and 6B. Adv. Exp. Med. Biol. 2018; 1045: 209–26. https://doi. org/10.1007/978-981-10-7230-7_10
- Pantry S.N., Medveczky P.G. Latency, integration, and reactivation of human herpesvirus-6. Viruses. 2017; 9(7): 194. https://doi. org/10.3390/v9070194
- Мелехина Е.В., Домонова Э.А., Гоптарь И.А., Шипулина О.Ю., Горелов А.В. Первый в России случай наследственной передачи хромосомноинтегрированного вируса герпеса человека 6В (Human betaherpesvirus 6B). Вопросы практической педиатрии.
2019; 14(1): 33–40. https://doi.org/10.20953/1817-7646-2019-1- 33-40 https://elibrary.ru/wdayvg - Солдатова Т.А., Тихомиров Д.С., Крылова А.Ю., Мисько О.Н., Старкова О.Г. Туполева Т.А. Актуальные проблемы диагностики активной инфекции, ассоциированной с вирусом герпеса чело-века 6, у пациентов гематологического профиля с наследуемой
хромосомноинтегрированной формой вируса. Гематология и трансфузиология. 2023; 68(S2): 54–5. https://elibrary.ru/bsmbls - Berneking L., Both A., Langebrake C., Aepfelbacher M., Lütgehetmann M., Kröger N., et al. Detection of human herpesvirus 6 DNA and chromosomal integration after allogeneic hematopoietic stem cell transplantation: A retrospective single center analysis. Transpl.
Infect. Dis. 2022; 24(3): e13836. https://doi.org/10.1111/tid.13836 - Nishimura N., Yoshikawa T., Ozaki T., Sun H., Goshima F., Nishiyama Y., et al. In vitro and in vivo analysis of human herpesvirus-6 U90 protein expression. J. Med. Virol. 2005; 75(1): 86–92. https:// doi.org/10.1002/jmv.20241
- Ward K.N., Leong H.N., Nacheva E.P., Howard J., Atkinson C.E., Davies N.W., et al. Human herpesvirus 6 chromosomal integration in immunocompetent patients results in high levels of viral DNA in blood, sera, and hair follicles. J. Clin. Microbiol. 2006; 44(4): 1571–4. https://doi.org/10.1128/JCM.44.4.1571-1574.2006
- Tanaka-Taya K., Sashihara J., Kurahashi H., Amo K., Miyagawa H., Kondo K., et al. Human herpesvirus 6 (HHV-6) is transmitted from parent to child in an integrated form and characterization of cases with chromosomally integrated HHV-6 DNA. J. Med. Virol. 2004;
73(3): 465–73. https://doi.org/10.1002/jmv.20113 - Антонова Т.В., Ножкин М.С., Побегалова О.Е., Горчакова О.В.,Сабадаш Н.В., Лиознов Д.А. Влияние реактивации цитомегаловирусной инфекции и инфекции вируса герпеса человека 6 типа на течение раннего периода после трансплантации гемо-поэтических стволовых клеток у онкогематологических пациентов. Журнал инфектологии. 2022; 14(5): 41–50. https://doi.org/10.22625/2072-6732-2022-14-5-41-50 https://elibrary.ru/khzvzr
- Handley G., Khawaja F., Kondapi D.S., Lee H.J., Kaufman G.P.,Neelapu S.S., et al. Human herpesvirus 6 myelitis after chimeric
Выпуск
Другие статьи выпуска
В первые 20 лет наступившего ХХI века практически ежегодно регистрировались вспышки вирусных инфекций. Становится все более ясным, что эпидемии смертоносных заболеваний будут возникать и впредь, до тех пор, пока человечество не изменит своего разрушительного отношения к природе. Возникает вопрос для дискуссии ‒ достаточно ли существующего арсенала противовирусных средств, чтобы противостоять
сложившейся неблагоприятной социально-экономической ситуации в мире?
Введение:
Респираторно-синцитиальный вирус крупного рогатого скота (Pneumoviridae: Orthornavirae, Or-thopneumovirus; Bovine respiratory syncytial virus, BRSV, Bovine orthopneumovirus) ‒ один из возбудителей респираторных заболеваний животных.
Актуально изучение частоты выявления агента у восприимчивых особей и его генетического разнообразия.
Цель работы:
Изучение частоты выявления вируса BRSV от больных животных методом ОТ-ПЦР и генетического полиморфизма изолятов на основе определения полной нуклеотидной последовательности гена гликопротеина G.
Материалы и методы:
Для выявления генома BRSV использовали последовательности участка гена гликопротеина F размером 381 п.н., а для филогенетического анализа ‒ полные нуклеотидные последовательности гена G. Филогенетические дендрограммы строили с использованием метода максимального правдоподобия в программе MEGA 7.0.
Результаты:
При вспышках массовых респираторных болезней РНК BRSV выявляли у животных всех возрастов в пробах легких, носовых выделений, слизистой оболочки трахеи, легочных лимфатических узлов.
В результате сиквенса получили полные нуклеотидные последовательности гена гликопротеина G размером 771 п.н. для 5 изолятов вируса и размером 789 п.н. для двух изолятов, нуклеотидное сходство между которыми составило 87‒100%. По результатам филогенетического анализа исследуемые изоляты отнесены к подгруппам вируса II и III, в каждую из которых вошли по два изолята соответственно.
Отдельную кладу образовал изолят K18, выделенный от животных, завезенных из Канады, а также образцы вакцин, содержащих аттенуированный штамм «375».
Заключение:
Геном вируса BRSV присутствовал у коров и нетелей в 20 и 14,3% случаев соответственно,
у телят в возрасте до 1 мес ‒ в 3,05%, у телят в возрасте от 1 до 6 мес ‒ в 6,7%. Полный анализ нуклеотидной последовательности гена G является полезным инструментом для изучения молекулярной эпизоотологии респираторно-синцитиальной инфекции крупного рогатого скота в конкретном регионе.
Введение:
Гепатит В является актуальной проблемой общественного здравоохранения во всем мире. На клиническое течение заболевания, особенно на его склонность к хронизации инфекции и развитию устойчивости к терапии, значительное влияние оказывают генотип и специфические мутации вируса гепатита В (ВГВ). С учетом сохраняющейся важности эпидемиологического контроля и профилактики заболевания, существует необходимость в простом, высокочувствительном и надежном методе секвенирования полного генома ВГВ.
Цель работы:
Создание и апробация амплификационной панели для полногеномного секвенирования ВГВ.
Материалы и методы:
В настоящей работе мы представляем амплификационную панель NGS, предназначенную для секвенирования генома ВГВ на платформе Illumina. Панель, состоящая из 54 праймеров, разделенных на 2 пула и амплифицирующих перекрывающиеся участки генома ВГВ длиной до 300 п.н., была апробирована на 246 образцах ДНК ВГВ, выделенных из крови.
Результаты:
Исследуемая выборка представляла собой широкое генотипическое разнообразие вируса, с выраженным преобладанием генотипа, характерного для Московского региона: 216 образцов были определены как генотип D, 27 – как генотип A, 2 – генотип B и 1 – генотип E. Пять образцов содержали по меньшей мере одну мутацию, связанную с устойчивостью к противовирусной терапии, в 23 образцах была найдена по меньшей мере одна мутация, связанная с ускользанием от поствакцинального ответа.
Заключение:
В работе детально изложены этапы проведения полногеномного секвенирования ВГВ, приведены лабораторный протокол, нуклеотидные последовательности используемых праймеров и подход к анализу полученных данных. На примере выборки клинических образцов показана состоятельность применяемой панели. Панель для секвенирования ВГВ обладает большим потенциалом для использования в научных исследованиях, эпидемиологическом мониторинге и развитии методов персонализированной медицины.
Введение:
Открытие двух типов вируса ЭпштейнаБарр (ВЭБ) ‒ ВЭБ-1 и ВЭБ-2 ‒ стимулировало изучение их распространенности в популяциях и связи со злокачественными опухолями.
Цель исследования:
Изучить персистенцию ВЭБ-1 и ВЭБ-2 среди этносов России, проанализировать
ПЦР-продукты гена LMP1 в изолятах вируса и оценить вклад типов ВЭБ в заболеваемость злокачественными новообразованиями.
Материалы и методы:
Изоляты ВЭБ, амплифицированные из смывов ротовой полости представителей
республик Адыгея, Калмыкия, Татарстан и Московской области (МО), изучали методом гнездной ПЦР на принадлежность к ВЭБ-1 и ВЭБ-2. Ампликоны LMP1, полученные с помощью ПЦР в реальном времени из ДНК вирусных изолятов, подвергали классификации и секвенированию на автоматическом секвенаторе ДНК ABI PRISM 3100-Avant (США), а результаты секвенирования анализировали с помощью программ Chromas 230 и Vector NT (Invitrogen, США). Достоверность полученных данных оценивали с помощью статистических пакетов Statistica for Windows 10.0.
Результаты:
Показатели распространенности ВЭБ-1 и ВЭБ-2 у представителей четырех этносов сравни-
вали с уровнями заболеваемости некоторыми опухолями у населения трех республик и МО. Доминирующая персистенция трансформирующего in vitro ВЭБ-1 у представителей Татарстана и МО коррелировала среди населения этих территорий с высокой заболеваемостью раком желудка и лимфомами. Напротив, преобладающее инфицирование не трансформирующим in vitro ВЭБ-2 представителей Адыгеи и обоими
типами вируса примерно у одинакового процента представителей Калмыкии коррелировало с более низкой заболеваемостью вышеуказанными опухолями населения этих республик. Различия между показателями заболеваемости указанными новообразованиями в сравниваемых этнических популяциях были статистически недостоверными (р > 0,05). Обнаруженные варианты LMP1 не отражали ни уровень персистенции типов ВЭБ, ни частоту возникновения опухолей.
Заключение:
Инфицированность этносов ВЭБ-1 и ВЭБ-2 может существенно различаться под влиянием
разных ф
Основная цель настоящей работы заключалась в определении особенностей циркуляции разных вирусных респираторных патогенов в период эпидемического сезона 2022–2023 гг. на фоне продолжающейся эволюционной изменчивоcти вируса SARS-CoV-2.
Материалы и методы:
В статье использованы методы, применяемые в «традиционном» и «госпитальном» эпидемиологическом надзоре за ОРВИ.
Результаты и обсуждение:
На фоне относительно низкой активности SARS-CoV-2 и его новых вариантов период с октября 2022 г. по сентябрь 2023 г. характеризовался ранней и высокой активностью вируcа гриппа A(H1N1)pdm09 (ноябрь–декабрь), на смену которому пришел вирус гриппа В (январь–март); активность вируса гриппа A(H3N2) была крайне низкой.
По антигенным свойствам популяции эпидемических штаммов были близкородственны вирусам, входившим в состав гриппозных вакцин и рекомендованных экспертами Всемирной организации здравоохранения для текущего сезона в странах Северного полушария.
Подтверждена эффективность вакцинопрофилактики гриппа у привитых (75,0%). Все изученные штаммывирусов гриппа A(H1N1)pdm09, A(H3N2) и В сохранили чувствительность к препаратам с антинейраминидазной активностью.
Структура и долевое участие других возбудителей ОРВИ по сравнению с предыдущим сезоном несколько изменились: выявлена тенденция к росту активности HAdV и HMPV, практически равнозначная активность HRsV, HRV, HCoV и HBoV и снижение активности HPIV.
При этом частота других возбудителей ОРВИ не достигла показателей предпандемического по COVID-19 периода. Дано обоснование актуализации состава гриппозных вакцин для стран Северного полушария в сезоне 2023–2024 гг.
Арбовирусные инфекции, передающиеся человеку в основном через членистоногих переносчиков, представляют собой значительную глобальную угрозу здоровью населения. Арбовирусы, такие как вирусы денге, Зика, чикунгунья и Западного Нила, продолжают вызывать широкомасштабные вспышки заболеваний, что требует применения современных средств диагностики.
Новые технологии, такие как «Лаборатория на чипе» (LOC), «Лаборатория на диске» (LOAD), микрофлюидические аналитические устройства на бумажной основе (µPADS), иммунохроматографический анализ (ИХА), CRISPR-CAS 12/13, кварцевые микровесы (QCM) и нанотехнологии, оцениваются с точки зрения их потенциала для улучшения диагностики арбовирусов, поскольку они предлагают быстрые, точные и точечные решения. Кроме того, выявление надежных биомаркеров, включая воспалительные цитокины, антитела, продукты активации эндотелия и индикаторы повреждения тканей или органов, имеет решающее значение для лучшего понимания патогенеза заболевания, прогноза и ответа на лечение.
Всесторонний анализ потенциальных методов диагностики и биомаркеров арбовирусных инфекций проливает свет на развивающиеся стратегии борьбы с этими значимыми для медицины заболеваниями, что в конечном итоге способствует повышению эффективности надзора, диагностики и лечения во всем мире.
В статье приведены исторические аспекты и основные результаты работы Отдела экологии вирусов (ОЭВ) с Научно-практическим центром по экологии и эпидемиологии гриппа, который был организован в 1969 г. на базе Института вирусологии им. Д.И. Ивановского АМН СССР.
Деятельность ОЭВ на протяжении более 50 лет была направлена на разработку фундаментальных проблем экологии вирусов, включая вопросы формирования популяционных генофондов вирусов в природе, и проведение комплексных крупномасштабных исследований в интересах биобезопасности государства.
Основное внимание в работе отдела посвящено проблемам особо опасных (арбовирусных) и социально значимых (грипп и другие ОРВИ, парентеральные гепатиты) вирусных инфекций.
В результате этой крупномасштабной работы на территории Северной Евразии были изолированы более 2 тыс. штаммов зоонозных вирусов (17 родов, 8 семейств), экологически связанных с различными видами членистоногих переносчиков и позвоночных хозяев.
Многие из них были зарегистрированы в международных каталогах в качестве новых видов. Изучена роль выделенных вирусов в патологии человека, описаны новые вирусные инфекции, разработаны диагностические препараты. Полученные в отделе научные результаты имеют высокий приоритет и признаны на мировом уровне.
Издательство
- Издательство
- ВНПОЭМП
- Регион
- Россия, Москва
- Почтовый адрес
- 111123, город Москва, Новогиреевская ул, д. 3а, этаж/помещ. 3/IX ком. 33
- Юр. адрес
- 111123, город Москва, Новогиреевская ул, д. 3а, этаж/помещ. 3/IX ком. 33
- ФИО
- Акимкин Василий Геннадьевич (ПРЕДСЕДАТЕЛЬ ПРЕЗИДИУМА)
- E-mail адрес
- vnpoemp@gmail.com
- Контактный телефон
- +7 (925) 0118779