- A. Blázquez-Garcıa, A. Conde, U. Mori, and J. A. Lozano, “A Review on Outlier/Anomaly Detection in Time Series Data”, ACM Comput. Surv. 54 (3), 56: 1-56: 33 (2021). DOI: 10.1145/3444690
- V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey”, ACM Comput. Surv. 41 (3), 15: 1-15: 58 (2009). DOI: 10.1145/1541880.1541882
- V. Chandola, D. Cheboli, and V. Kumar, Detecting Anomalies in a Time Series Database, Technical Report TR 09-004 (University of Minnesota, Minneapolis, 2009). https://hdl.handle.net/11299/215791 Cited August 23, 2023.
- J. Lin, E. Keogh, A. Fu, and H. V. Herle, “Approximations to Magic: Finding Unusual Medical Time Series”, in Proc. 18th IEEE Symposium on Computer-Based Medical Systems (CBMS 2005), Dublin, Ireland, June 23-24, 2005 (IEEE Press, Washington D.C., 2005), pp. 329-334. DOI: 10.1109/CBMS.2005.34
- A. L. Goldberger, L. A. N. Amaral, L. Glass, et al., “PhysioBank, PhysioToolkit, and PhysioNet Components of a New Research Resource for Complex Physiologic Signals”, Circulation 101 (23), e215-e220 (2000). DOI: 10.1161/01.CIR.101.23.e215
- T. Nakamura, M. Imamura, R. Mercer, and E. Keogh, “MERLIN: Parameter-Free Discovery of Arbitrary Length Anomalies in Massive Time Series Archives”, in Proc. 20th IEEE Int. Conf. on Data Mining (ICDM 2020), Sorrento, Italy, November 17-20, 2020 (IEEE Press, New York, 2020), pp. 1190-1195. DOI: 10.1109/ICDM50108.2020.00147
- M. Zymbler and Y. Kraeva, “High-Performance Time Series Anomaly Discovery on Graphics Processors”, Mathematics 11 (14), Article Number 3193 (2023). DOI: 10.3390/math11143193 EDN: JOUCBW
- J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A Symbolic Representation of Time Series, with Implications for Streaming Algorithms”, in Proc. of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD 2003), San Diego, California, USA, June 13, 2003 (ACM Press, New York, 2003), pp. 2-11. DOI: 10.1145/882082.882086
- M. L. Zymbler, “A Parallel Discord Discovery Algorithm for Time Series on Many-Core Accelerators”, Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 20 (3), 211-223 (2019). DOI: 10.26089/NumMet.v20r320 EDN: CLILWK
-
D. Yankov, E. Keogh, and U. Rebbapragada, "Disk Aware Discord Discovery: Finding Unusual Time Series in Terabyte Sized Datasets", in Proc. of the 7th IEEE Int. Conf. on Data Mining (ICDM 2007), Omaha, Nebraska, USA, October 28-31, 2007 (IEEE Press, New York, 2007), pp. 381-390. DOI: 10.1109/ICDM.2007.61
-
D. Yankov, E. Keogh, and U. Rebbapragada, "Disk Aware Discord Discovery: Finding Unusual Time Series in Terabyte Sized Datasets", Knowl. Inf. Syst. 17 (2), 241-262 (2008). DOI: 10.1007/s10115-008-0131-9 EDN: VPCVZO
-
Ya. A. Kraeva and M. L. Zymbler, "A Parallel Discord Discovery Algorithm for a Graphics Processor", Pattern Recognit. Image Anal. 33 (2), 101-112 (2023). DOI: 10.1134/S1054661823020062 EDN: XCJVLH
-
M. Zymbler, A. Grents, Y. Kraeva, and S. Kumar, "A Parallel Approach to Discords Discovery in Massive Time Series Data", Comput. Mater. Contin. 66 (2), 1867-1878, 2021. DOI: 10.32604/cmc.2020.014232 EDN: EYGISS
-
Y. Wu, Y. Zhu, T. Huang, et al., "Distributed Discord Discovery: Spark Based Anomaly Detection in Time Series", in 17th IEEE Int. Conf. on High Performance Computing and Communications (HPCC 2015), 7th IEEE Int. Symposium on Cyberspace Safety and Security (CSS 2015), and 12th IEEE Int. Conf. on Embedded Software and Systems (ICESS 2015), New York, USA, August 24-26, 2015 (IEEE Press, New York, 2015), pp. 154-159. DOI: 10.1109/HPCC-CSS-ICESS.2015.228
-
T. Huang, Y. Zhu, Y. Mao, et al., "Parallel Discord Discovery", in Lecture Notes in Computer Science (Springer, Cham, 2016), Vol. 9652, pp. 233-244. DOI: 10.1007/978-3-319-31750-2_19
-
A. Mueen, S. Nath, and J. Liu, "Fast Approximate Correlation for Massive Time-Series Data", in Proc. of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2010), Indianapolis, Indiana, USA, June 6-10, 2010 (ACM Press, New York, 2010), pp. 171-182. DOI: 10.1145/1807167.1807188
-
Individual Household Electric Power Consumption. https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption/ Cited August 24, 2023.
-
M. Thill, W. Konen, and T. Bäck, "MarkusThill/MGAB: The Mackey-Glass Anomaly Benchmark. Version v1.0.1", Zenodo, 2020. DOI: 10.5281/ZENODO.3762385
-
M. C. Mackey and L. Glass, "Oscillation and Chaos in Physiological Control Systems", Science 197 (4300), 287-289 (1977). DOI: 10.1126/science.267326
-
Vl. V. Voevodin, A. S. Antonov, D. A. Nikitenko, et al., "Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community", Supercomput. Front. Innov. 6 (2), 4-11 (2019). DOI: 10.14529/jsfi190201 EDN: SYPENS
-
Z. Zimmerman, K. Kamgar, N. S. Senobari, et al., "Matrix Profile XIV: Scaling Time Series Motif Discovery with GPUs to Break a Quintillion Pairwise Comparisons a Day and Beyond", in Proc. of the ACM Symposium on Cloud Computing (SoCC 2019), Santa Cruz, CA, USA, November 20-23, 2019. (ACM Press, New York, 2019), pp. 74-86. DOI: 10.1145/3357223.3362721
-
C.-C. M. Yeh, Y. Zhu, L. Ulanova, et al., "Time Series Joins, Motifs, Discords and Shapelets: A Unifying View that Exploits the Matrix Profile", Data Min. Knowl. Discov. 32 (1), 83-123 (2018). DOI: 10.1007/s10618-017-0519-9 EDN: YOESGH