- S. A. Ivanov, K. Yu. Nikolskaya, G. I. Radchenko, et al., “Digital Twin of a City: Concept Overview”, Vestn. Yuzhn. Ural. Gos. Univ. Ser. Vychisl. Mat. Inf. 9 (4), 5-23 (2020). DOI: 10.14529/cmse200401 EDN: CNBYFY
- M. L. Zymbler, Ya. A. Kraeva, E. A. Latypova, et al., “Cleaning Sensor Data in Intelligent Heating Control System”, Vestn. Yuzhn. Ural. Gos. Univ. Ser. Vychisl. Mat. Inf. 10 (3), 16-36 (2021). DOI: 10.14529/cmse210302 EDN: XPOAYC
- V. V. Epishev, A. P. Isaev, R. M. Miniakhmetov, et al., “Physiological Data Mining System for Elite Sports”, Vestn. Yuzhn. Ural. Gos. Univ. Ser. Vychisl. Mat. Inf. 2 (1), 44-54 (2013). DOI: 10.14529/cmse130105 EDN: PXQTVZ
- S. M. Abdullaev, O. Yu. Lenskaia, A. O. Gayazova, et al., “Short-Range Forecasting Algorithms Using Radar Data: Translation Estimate and Life-Cycle Composite Display”, Vestn. Yuzhn. Ural. Gos. Univ. Ser. Vychisl. Mat. Inf. 3 (1), 17-32 (2014). DOI: 10.14529/cmse140102 EDN: SACNMT
- M. M. Dyshaev and I. M. Sokolinskaya, “Representation of Trading Signals Based on Kaufman Adaptive Moving Average as a System of Linear Inequalities”, Vestn. Yuzhn. Ural. Gos. Univ. Ser. Vychisl. Mat. Inf. 2 (4), 103-108 (2013). DOI: 10.14529/cmse130408 EDN: RGQXVL
- M. Khayati, A. Lerner, Z. Tymchenko, and P. Cudré-Mauroux, “Mind the Gap: An Experimental Evaluation of Imputation of Missing Values Techniques in Time Series”, Proc. VLDB Endow. 13 (5), 768-782 (2020). DOI: 10.14778/3377369.3377383
- F. A. Adnan, K. R. Jamaludin, W. Z. A. W. Muhamad, and S. Miskon, “A Review of the Current Publication Trends on Missing Data Imputation over Three Decades: Direction and Future Research”, Neural Comput. Appl. 34 (21), 18325-18340 (2022). DOI: 10.1007/s00521-022-07702-7 EDN: QUNWQ
- M. L. Zymbler, V. A. Polonsky, and A. A. Yurtin, “On One Method of Imputation Missing Values of a Streaming Time Series in Real Time”, Vestn. Yuzhn. Ural. Gos. Univ. Ser. Vychisl. Mat. Inf. 10 (4), 5-25 (2021). DOI: 10.14529/cmse210401 EDN: LSSNPY
- S. Imani, F. Madrid, W. Ding, et al., “Matrix Profile XIII: Time Series Snippets: A New Primitive for Time Series Data Mining”, in Proc. 9th IEEE Int. Conf. on Big Knowledge (ICBK), Singapore, November 17-18, 2018 (IEEE Press, New York, 2018), pp. 382-389. DOI: 10.1109/ICBK.2018.00058
-
W. Cao, D. Wang, J. Li, et al., "BRITS: Bidirectional Recurrent Imputation for Time Series", in Proc. 32nd Conf. on Neural Inf. Proc. Systems (NeurIPS 2018), Montréal, Canada, December 3-8, 2018. https://proceedings.neurips.cc/paper_files/paper/2018/file/734e6bfcd358e25ac1db0a4241b95651-Paper.pdf Cited June 18, 2023.
-
J. Yoon, W. R. Zame, and M. van der Schaar, "Estimating Missing Data in Temporal Data Streams Using Multi-Directional Recurrent Neural Networks", IEEE Trans. Biomed. Eng. 66 (5), 1477-1490 (2019). DOI: 10.1109/TBME.2018.2874712
-
Y. Liu, R. Yu, S. Zheng, et al., "NAOMI: Non-Autoregressive Multiresolution Sequence Imputation", in Proc. 33rd Int. Conf. on Neural Inf. Proc. Systems (NeurIPS 2019), Vancouver, Canada, December 8-14, 2019. https://proceedings.neurips.cc/paper_files/paper/2019/file/50c1f44e426560f3f2cdcb3e19e39903-Paper.pdf Cited June 18, 2023.
-
W. Du, D. Côté, and Y. Liu, "SAITS: Self-Attention-Based Imputation for Time Series", Expert Syst. Appl. 219, Article Number 119619 (2023). DOI: 10.1016/j.eswa.2023.119619 EDN: ZZESPV
-
J. Yoon, J. Jordon, and M. van der Schaar, GAIN: Missing Data Imputation Using Generative Adversarial Nets, arXiv preprint: 1806.02920v1 [cs.LG] (Cornell Univ. Library, Ithaca, 2018). https://arxiv.org/abs/1806.02920 Cited June 18, 2023.
-
Y. Luo, X. Cai, Y. Zhang, et al., "Multivariate Time Series Imputation with Generative Adversarial Networks", in Proc. 32nd Conf. on Neural Inf. Proc. Systems (NeurIPS 2018), Montréal, Canada, December 3-8, 2018. https://proceedings.neurips.cc/paper/2018/file/96b9bff013acedfb1d140579e2fbeb63-Paper.pdf Cited June 18, 2023.
-
Z. Guo, Y. Wan, and H. Ye, "A Data Imputation Method for Multivariate Time Series Based on Generative Adversarial Network", Neurocomputing 360, 185-197 (2019). DOI: 10.1016/j.neucom.2019.06.007
-
Y. Luo, Y. Zhang, X. Cai, and X. Yuan, "E²GAN: End-to-End Generative Adversarial Network for Multivariate Time Series Imputation", in Proc. 28th Int. Joint Conf. on Artificial Intelligence, Macao, China, August 10-16, 2019 (AAAI Press, Washington, DC, 2019), pp. 3094-3100. DOI: 10.24963/ijcai.2019/429
-
S. Gharghabi, S. Imani, A. Bagnall, et al., "An Ultra-Fast Time Series Distance Measure to Allow Data Mining in More Complex Real-World Deployments", Data Min. Knowl. Disc. 34, 1104-1135 (220). DOI: 10.1007/s10618-020-00695-8 EDN: ORIMXO
-
C.-C. M. Yeh, Y. Zhu, L. Ulanova, et al., "Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets", in Proc. IEEE 16th Int. Conf. on Data Mining (ICDM), Barcelona, Spain, December 12-15, 2016 (IEEE Press, New York, 2017), pp. 1317-1322. DOI: 10.1109/ICDM.2016.0179
-
M. L. Zymbler and A. I. Goglachev, "Discovery of Typical Subsequences of Time Series on Graphical Processor", Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie). 22 (4), 344-359 (2021). DOI: 10.26089/NumMet.v22r423 EDN: IHSXPN
-
J. Sola and J. Sevilla, "Importance of Input Data Normalization for the Application of Neural Networks to Complex Industrial Problems", IEEE Trans. Nucl. Sci. 44 (3), 1464-1468 (1997). DOI: 10.1109/23.589532
-
L. Huang, Normalization Techniques in Deep Learning (Springer, Cham, 2022). DOI: 10.1007/978-3-031-14595-7
-
E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Practice (Prentice-Hall, Englewood Cliffs, 1977; Mir, Moscow, 1980).
-
S. Hochreiter, "The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions", Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 6 (2), 107-116 (1998). DOI: 10.1142/S0218488598000094 EDN: ESDZQL
-
L. Lu, Y. Shin, Y. Su, and G. E. Karniadakis, "Dying ReLU and Initialization: Theory and Numerical Examples", Commun. Comput. Phys. 28, 1671-1706 (2020). DOI: 10.4208/cicp.OA-2020-0165 EDN: EBKRPZ
-
R. V. Bilenko, N. Yu. Dolganina, E. V. Ivanova, and A. I. Rekachinsky, "High-Performance Computing Resources of South Ural State University", Vestn. Yuzhn. Ural. Gos. Univ. Ser. Vychisl. Mat. Inf. 11 (1), 15-30 (2022). DOI: 10.14529/cmse220102 EDN: OLCPUG
-
I. Laña, I. Olabarrieta, M. Vélez, and J. Del Ser, "On the Imputation of Missing Data for Road Traffic Forecasting: New Insights and Novel Techniques", Transp. Res. Part C Emerg. Technol. 90, 18-33 (2018). DOI: 10.1016/j.trc.2018.02.021
-
A. Reiss and D. Stricker, "Introducing a New Benchmarked Dataset for Activity Monitoring", in Proc. 16th Int. Symposium on Wearable Computers, Newcastle, United Kingdom, June 18-22, 2012 (IEEE Press, New York, 2012), pp. 108-109. DOI: 10.1109/ISWC.2012.13
-
L. Biewald, "Experiment Tracking with Weights and Biases", Software available from wandb.com:https://docs.wandb.ai/ Cited June 15, 2023.
-
X. Shu, F. Porikli, and N. Ahuja, "Robust Orthonormal Subspace Learning: Efficient Recovery of Corrupted Low-Rank Matrices", in 2014 IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, USA, June 23-28, 2014 (IEEE Press, New York, 2014), pp. 3874-3881. DOI: 10.1109/CVPR.2014.495
- L. Li, J. McCann, N. S. Pollard, and C. Faloutsos, “DynaMMo: Mining and Summarization of Coevolving Sequences with Missing Values”, in Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Paris, France, June 28-July 1, 2009 (ACM Press, New York, 2009), pp. 507-516. DOI: 10.1145/1557019.1557078
-
M. Khayati, P. Cudré-Mauroux, and M. H. Böhlen, "Scalable Recovery of Missing Blocks in Time Series with High and Low Cross-Correlations", Knowl. Inf. Syst. 62 (6), 2257-2280 (2020). DOI: 10.1007/s10115-019-01421-7 EDN: DEDPVQ
-
D. Zhang and L. Balzano, "Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation", in Proc. 19th Int. Conf. on Artificial Intelligence and Statistics, Cadiz, Spain, May 9-11, 2016. Volume 51, 1460-1468 (2016). http://proceedings.mlr.press/v51/zhang16b.pdf Cited June 15, 2023.
-
R. Mazumder, T. Hastie, and R. Tibshirani, "Spectral Regularization Algorithms for Learning Large Incomplete Matrices", J. Mach. Learn. Res. 11, Article Number 80, 2287-2322 (2010). https://www.jmlr.org/papers/volume11/mazumder10a/mazumder10a.pdf Cited June 15, 2023.
-
O. Troyanskaya, M. Cantor, G. Sherlock, et al., "Missing Value Estimation Methods for DNA Microarrays", Bioinformatics 17 (6), 520-525 (2001). DOI: 10.1093/bioinformatics/17.6.520 EDN: ILFJTR
-
J. Mei, Y. de Castro, Y. Goude, and G. Hébrail, "Nonnegative Matrix Factorization for Time Series Recovery from a Few Temporal Aggregates", in Proc. 34th Int. Conf. on Machine Learning, Sydney, Australia, August 6-11, 2017. Volume 70, 2382-2390 (2017). https://dl.acm.org/doi/10.5555/3305890.3305927 Cited June 15, 2023. DOI: 10.5555/3305890.3305927CitedJune15
-
H.-F. Yu, N. Rao, and I. S. Dhillon, "Temporal Regularized Matrix Factorization for High-Dimensional Time Series Prediction", in Proc. Annual Conf. on Neural Information Processing Systems, Barcelona, Spain, December 5-10, 2016. https://dl.acm.org/doi/abs/10.5555/3157096.3157191 Cited June 15, 2023. DOI: 10.5555/3157096.3157191CitedJune15
-
B. D. Minor, J. R. Doppa, and D. J. Cook, "Learning Activity Predictors from Sensor Data: Algorithms, Evaluation, and Applications", IEEE Trans. Knowl. Data Eng. 29 (12), 2744-2757 (2017). DOI: 10.1109/TKDE.2017.2750669