ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ СПУТНИКА ПОД ДЕЙСТВИЕМ СИЛ СВЕТОВОГО ДАВЛЕНИЯ И ГРАВИТАЦИИ (2024)
Рассматривается относительное движение космического аппарата (КА) под действием моментов сил гравитации и светового давления. Под КА мы подразумеваем небесное тело,
способное отражать световой поток от Солнца. Орбитальное движение КА считается известным. КА совершает плоские движения в горизонтальной плоскости относительно центра масс. Отражающее зеркало может быть размещено перпендикулярно плоскости орбиты. Основная задача, решаемая в работе —это исследование устойчивости эксцентриситетных колебаний. Данная технология разворачивается постепенно. Сначала устанавливается существование колебаний заданного типа. Здесь штатным образом применяется теорема о неявной функции. Последующий затем анализ устойчивости опирается на линейную теорию и сводится к рассмотрению систем в вариациях. Завершает работу рассмотрение нелинейного случая.
Идентификаторы и классификаторы
Следуя работам [3,4, 18], будем исходить из уравнения плоских колебаний спутника на эллиптической орбите, представленного в форме ¨δ = c f(δ) − μ(1 + e cos ν(t))3 sin(δ − 2ν(t) + 2ϕ), (1.1) где конфигурационная переменная δ = 2θ − 2ϕ, θ —у гол между направлением на перицентр орбиты спутника и одной из его главных центральных осей инерции (рис. 1), ϕ —азиму т источника светового потока (Солнца) относительно перицентра орбиты, e —эк сцентриситет орбиты, c —постоянная, характеризующая отражающую/поглощающую характеристику внешней поверхности спутника, функция f(δ) задает момент сил светового давления:
Список литературы
- Белецкий В. В. Движение искусственного спутника относительно центра масс. —М.: Наука, 1965.
- Карымов А.А. Определение сил и моментов сил светового давления, действующих на тело при движении в космическом пространстве// Прикл. мат. мех. —1962.—26, № 5.— С. 865–876.
- Косенко И. И. Топологическая степень и аппроксимация решений нерегулярных задач механики. Колебания спутника на эллиптической орбите// Соврем. мат. Фундам. направл.— 2006.—16.— С. 68–95.
- Красильников П.С. Прикладные методы исследования нелинейных колебаний.—Ижевск: Институт комп. иссл., 2015.
- Малкин И. Г. Теория устойчивости движения.—М.—Л.: ГИТТЛ, 1952.
- Малкин И. Г. Некоторые задачи теории нелинейных колебаний.—М.: Едиториал УРСС, 2004.
- Маркеев А. П. Конструктивный алгоритм нормализации периодического гамильтониана// Прикл. мат. мех. —2005.—69, № 3. —С. 355–371.
- Мозер Ю. Лекции о гамильтоновых системах.—М.: Мир, 1973.
- Моисеев Н. Н. Асимптотические методы нелинейной механики.—М.: Наука, 1969.
- Понтрягин Л.С. Обыкновенные дифференциальные уравнения.— Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001.
- Розо М. Нелинейные колебания в теории устойчивости.— М.: Наука, 1971.
- Треногин В.А. Функциональный анализ.—М.: Наука, 1980.
- Уиттекер Э.Т. Аналитическая динамика.— Ижевск: Удмуртский унив., 1999.
- Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью.—М.: Наука, 1985.
- Шварц Л. Анализ. Т. 1. —М.: Мир, 1972.
- Шильников Л. П., Шильников А. Л., Тураев Д.В., Чуа Л. Методы качественной теории в нелинейной динамике. Часть 1. —Москва—Ижевск: Институт комп. иссл., 2004.
- Якубович В.А., Старжинский В.М. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения.— М.: Наука, 1972.
- Kossenko I. I. On preservation of conditionally-periodic satellite librations in elliptic orbit with account of solar light pressure// Regul. Chaotic Dyn. —2004.—9, № 1.— С. 47–58.
Выпуск
Другие статьи выпуска
Цунами, произошедшее 11 марта 2011 года, а также другие недавние события показали, что разрушительные волны цунами, вызванные землетрясениями, продолжают представлять значительный риск для населения прибрежных районов, прилегающих к зонам субдукции, где расположено большинство источников цунами. В некоторых местах вдоль этих побережий высота подъема цунами может достигать 30 м и более, что приводит к разрушениям и человеческим жертвам. Однако максимумы высоты волн очень неравномерно распределены вдоль побережья с резкими локальными пиками амплитуды. Поскольку для прибрежных событий время прибытия волны цунами в ближайшую прибрежную точку после землетрясения составляет порядка 20 минут, быстрая (в течение 1-2 минут) правильная оценка распределения максимальной высоты волн вдоль побережья позволит службам оповещения принять меры по эвакуации именно там, где это необходимо.
Современные инструменты моделирования позволяют быстро рассчитать параметры волны с достаточной точностью, если известны характеристики волны на начальный момент времени. Однако для этого требуются расчеты с шагом в несколько метров, что отнимает много времени даже при использовании суперкомпьютеров. Кроме того, в случае сильного землетрясения возможны перебои в подаче электроэнергии, что не гарантирует, что численное моделирование можно будет начать сразу после сейсмического события. Использование большой расчетной сетки с разрешением в сотни метров не позволяет корректно оценить высоту волн цунами вблизи берега. Мелкие сетки приводят к увеличению продолжительности вычислительного времени. Разрешение этого противоречия диктует необходимость выбора оптимального соотношения между шагом сетки (точность результатов) и временем расчета. Вд анной работе исследуется зависимость расчетных параметров волны цунами от шага сетки. Полученные результаты будут использованы для оптимального выбора зон применения сеток с различным шагом. Вычислительные эксперименты проводились на персональном компьютере (ПК) с использованием аппаратного ускорения—специализированной микросхемы на базе программируемых вентильных матриц (Field Programmable Gate Array —FPGA), используемой с компьютером в качестве сопроцессора. В результате достигается достаточно высокая производительность вычислений. Расчет параметров волн вблизи берега на расчетной сетке из 3000 × 2500 узлов занимает менее 1 минуты. Кроме того, предлагаемое решение не зависит от возможных сбоев в электроснабжении.
Рассматривается квазилинейное эллиптическое уравнение второго порядка с суммируемой правой частью в пространстве Rn. Ограничения на структуру уравнения формулируются в терминах обобщенной N-функции. Внерефлек сивных пространствах Музилака—Орлича—Соболева доказано существование ренормализованного решения в пространстве Rn.
Изучается движение живого организма ленточной формы в направлении концентрации химических субстратов с помощью системы эволюционных дифференциальных уравнений в частных производных. Используется метод броуновского движения Эйнштейна для вывода хемотаксической модели, демонстрирующей бегущую полосу. Впервые применен метод Эйнштейна для обоснования уравнений, описывающих взаимодействие хемотаксической системы. Показано, что при наличии как ограниченного, так и неограниченного субстрата возможны бегущие полосы, и это соответствующим образом обосновано. Также изучается устойчивость постоянных стационарных состояний системы. Линеаризованная система в окрестности постоянного стационарного состояния получена при смешанных граничных условиях Дирихле и Неймана. Нам удалось найти явные условия линейной неустойчивости. Установлена линейная устойчивость по L2-норме, H1-норме и L ∞-норме при определенных условиях.
В статье представлен метод построения векторных полей, фазовые портреты которых имеют конечные множества заданных особых траекторий (предельных циклов, простых и сложных особых точек, сепаратрис) и заданные топологические структуры в ограниченных областях фазовой плоскости. Задача построения таких векторных полей является обобщением ряда известных обратных задач качественной теории обыкновенных дифференциальных уравнений. Предложенный метод её решения расширяет возможности математического моделирования динамических систем с заданными свойствами в различных областях науки и техники.
Исследуются функциональные и геометрические свойства пределов гомеоморфизмов с интегрируемым искажением областей в группах Карно. Гомеоморфизмы принадлежат классам Соболева. Получены условия, при выполнении которых пределы последовательностей таких гомеоморфизмов также принадлежат классу Соболева, имеют конечное искажение и обладают N−1-свойством Лузина. В случае групп Карно H-типа получены достаточные условия, налагаемые на области и последовательность гомеоморфизмов, при выполнении которых предельное отображение является инъективным почти всюду. Эти результаты играют ключевую роль при нахождении экстремальных решений задач математической теории упругости на группах Карно H-типа, которым посвящены последующие работы авторов.
Рассматриваются сильно эллиптические дифференциально-разностные уравнения со смешанными краевыми условиями, когда на части границы заданы однородные условия Дирихле, а на другой части границы —кра евые условия третьего рода. Показана взаимосвязь таких задач с нелокальными смешанными задачами для сильно эллиптических дифференциальных уравнений. Показана их однозначная разрешимость, гладкость обобщенных решений.
Рассматривается задача об успокоении нестационарной системы управления, описываемой системой дифференциально-разностных уравнений нейтрального типа с гладкими матричными коэффициентами с различным числом входов и выходов и несколькими запаздываниями. Установлена связь между вариационной задачей, соответствующей задаче об успокоении системы с последействием, и краевой задачей для системы дифференциально-разностных уравнений второго порядка. Получены априорные оценки решений. Доказана теорема о разрешимости рассматриваемой краевой задачи.
Издательство
- Издательство
- РУДН
- Регион
- Россия, Москва
- Почтовый адрес
- 117198, г. Москва, ул. Миклухо-Маклая, д. 6
- Юр. адрес
- 117198, г. Москва, ул. Миклухо-Маклая, д. 6
- ФИО
- Ястребов Олег Александрович (РЕКТОР)
- E-mail адрес
- rector@rudn.ru
- Контактный телефон
- +7 (495) 4347027
- Сайт
- https://www.rudn.ru/