В статье приведен анализ роли полноценности архитектуры интеллектуальных транспортных систем (ИТС) в обеспечении их эффективности. Многие страны или группы стран имеют архитектуру ИТС с успешными результатами ее применения на практике. Показано, что архитектура ИТС постоянно обновляется и это является характерной тенденцией. Приведена характеристика некоторых подходов к созданию архитектуры ИТС, проведен анализ существующих методов создания интеграционных платформ ИТС. В статье предложены новые подходы к формированию интеграционной платформы в составе ИТС на основе принципа разделения управления идентификацией цифровых объектов и управления структурами данных цифровых объектов. Приведена схема организации потоков данных в разных контурах программных средств интеграционной платформы. Предлагается разделить контуры управления собственно данными транспортной системы и идентификационными данными, которые описывают участника ИТС (цифровой объект) с расширением возможностей в условиях функционирования кооперативных ИТС. Обеспечивается возможность организации связанных цепочек идентификации цифровых объектов ИТС, участия в формировании для рабочих процессов ИТС сетевых структур, описывающих поведение цифровых объектов в ходе процессов ИТС и поведение конечных пользователей в соответствии со свойствами сетевых структур.
Идентификаторы и классификаторы
- УДК
- 72. Архитектура
Список литературы
-
Sun N. Intelligent Transportation System Planning in the Age of Artificial Intelligence. E3S Web of Conferences 253, 01036 (2021). 5 p.
-
Душкин Р.В. Интеллектуальные транспортные системы. М.: ДМК Пресс, 2020. 280 с.
-
Krüger P., Boltze M., Rittershaus L. Recommendations for the Development and Maintenance of National ITS Architectures. 13th World Conference on Transport Research, July 15-18, 2013 - Rio de Janeiro, Brazil, pp. 1-17.
-
Lu M., Turetken O. Cooperative and Connected Intelligent Transport Systems for Sustainable European Road Transport. Proceedings of 7th Transport Research Arena TRA 2018, April 16-19, 2018, Vienna, Austria. 2018, pp. 1-16.
-
Albrecht H., Drees H., Lachenmaier J., Pfähler K., Rittershaus L., Scholtes W. Development of an architecture framework for Intelligent Transport Systems. Proceedings of 7th Transport Research Arena TRA 2018, April 16-19, 2018, Vienna, Austria. 2018, pp. 1-10.
-
Karkhanis P.D., van den Brand M.G.J., Rajkarnikar S. Defining the C-ITS reference architecture. In Proceedings - 2018 IEEE 15th International Conference on Software Architecture Companion, ICSA-C 2018, pp. 148-151.
-
United States Department of Transportation. ARC-IT Version 9.0 The National ITS Reference. Available online: https://local.iteris.com/arc-it.
-
Методика оценки и ранжирования локальных проектов в целях реализации мероприятия “Внедрение интеллектуальных транспортных систем, предусматривающих автоматизацию процессов управления дорожным движением в городских агломерациях, включающих города с населением свыше 300 тысяч человек”. Утверждена распоряжением Минтранса России от 25.03.2020 N АК-60-р.
-
Жанказиев С.В., Воробьев А.И., Гаврилюк М.В. Принципы формирования государственной системы сертификации элементов ИТС в Российской Федерации // Транспорт Российской Федерации. 2020. №6(91). С. 46-49.
-
Matthew N.O. Sadiku Tembely M., Sarhan M. Musa. Internet of Vehicles: An Introduction // International Journals of Advanced Research in Computer Science and Software Engineering ISSN: 2277-128X. 2018. Vol. 8, Issue 1, pp. 11-13.
-
Lee E., Ryu K., Paik I. A Concept for Ubiquitous Transportation Systems and Related Development Methodology // International IEEE Conference on Intelligent Transportation Systems, Beijing, 12-15 October 2008, pp. 37-42 (2008). DOI: 10.1109/ITSC.2008.4732709
-
Sousa S., Santos A. A New Approach on Communications Architectures for Intelligent Transportation Systems // Procedia Computer Science. Vol. 110, 2017, pp. 320-327.
-
Wang Q., Li B., Li Z., Li L. Effect of connected automated driving on traffic capacity // Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20-22 October 2017, pp. 633-637.
-
Malikopoulos A., Hong S., Park B., Lee J., Ryu S. Optimal Control for Speed Harmonization of Automated Vehicles // IEEE Trans. Intell. Transp. Syst. 2019, no. 20, pp. 2405-2417.
-
Li D., Wagner P. A novel approach for mixed manual/connected automated freeway traffic management // Sensors 2020, no. 20, p. 1757.
-
Патент РФ RU 2 754 606 C1. Способ идентификации сервиса в структуре ENUM.
Выпуск
Другие статьи выпуска
В данной статье рассматривается использование двух основных типов глубоких нейронных сетей (DNN) - сверточных (CNN) и рекуррентных нейронных сетей (RNN), где проводится подробное сравнение каждой из них и того, как они могут быть оптимально использованы для синтеза многолучевой диаграммы направленности в фазированной антенной решетке (PAA) для мониторинга атмосферных радиозондовых средств. Показано, что DNN может одновременно использоваться в качестве вычислителя направлений прихода электромагнитных волн, например, от пилотируемого воздушного шара и нескольких беспилотных метеорологических зондов (UMP), перемещающихся в пространстве. При выборе между RNN и CNN выбор подходящей нейронной сети зависит от типа доступных данных и требуемых результатов. В то время как RNN используются в основном для классификации текста, CNN помогают идентифицировать и классифицировать изображения. Между ними много различий, но это не значит, что они взаимоисключающие. RNN и CNN CNN можно использовать вместе, чтобы воспользоваться их преимуществами.
Системы широковещательного телевидения изначально рассчитаны на восприятие изображения человеком в условиях передачи в ограниченном спектральном диапазоне, поэтому широковещательное телевидение соответствует параметрам зрительной системы человека и не превосходит их. В свою очередь, прикладные телевизионные системы, которые включают в себя, среди прочего, рентгенографию, болометрию и дистанционное зондирование Земли, предназначены для регистрации конкретных объектов. В то же время источниками регистрируемого излучения являются солнечный свет за пределами невизуального диапазона, рентгеновские лучи, инфракрасные лучи, дальность и условия распространения которых существенно отличаются от видимого солнечного света. Для точной регистрации этого излучения необходимы телевизионные системы с параметрами, существенно отличающимися от параметров зрительной системы человека. В этой статье рассматривается возможность обеспечения цветового контраста в прикладных телевизионных системах с широким динамическим диапазоном и предлагается метод оценки теплоты восприятия цветовых оттенков.
В работе рассмотрена проблема ограничения пропускной способности диаграммообразующей схемы цифровой антенной решетки, обусловленная возможностями существующих линий связи с последовательной передачей данных от приемных каналов к спецвычислителю. Данная проблема ограничивает возможности реализации методов цифровой обработки сигналов в цифровых антенных решетках. Предметом исследования является возможность повышения пропускной способности диаграммоообразующей схемы цифровой антенной решетки за счет программного сжатия данных в тракте обработки. Цель работы состоит в создании научно-методического аппарата, который позволит повысить пропускную способность диаграммообразующей схемы за счет использования принципа субъективной избыточности применительно к задачам обработки радиолокационных данных. Результаты работы включают: обоснование и формулировку принципа субъективной избыточности радиолокационных данных и метод сжатия радиолокационных данных, а также результаты численных исследований, подтверждающие работоспособность предложенного научно-методического аппарата. Принцип субъективной избыточности опирается на независимость разделения процессов обработки сигналов в пространственной и временной областях при приеме одного эхо-сигнала, а в случае приема нескольких эхо-сигналов на принцип суперпозиции полей от различных источников в дальней зоне антенны. Метод сжатия радиолокационных данных основан на принципе субъективной избыточности радиолокационных данных и отличается от известных итерационной процедурой аппроксимации матрицы комплексных отсчетов в виде суперпозиции произведений одномерных косинусных спектров. Также показано, что применение метода сжатия радиолокационных данных позволяет в несколько раз увеличить пропускную способность линий передачи цифровой антенной решетки.
Измерительные системы технического зрения получили широкое распространение при решении промышленных задач. Подобные системы используются для работы в агрессивных условиях: при наличии осадков в виде дождя и снега, грязи, пыли, в широком температурном диапазоне. В таких условиях, несмотря на работоспособность аппаратуры, происходит потеря данных в измерительных системах. Потеря данных приводит к искажениям измерений и увеличению вероятности пропуска обнаружения объектов. Подобные ситуации представляют собой актуальную проблему для организаций, эксплуатирующих измерительные системы технического зрения. Для восстановления данных необходимо повторное проведение измерений, что связано с временными, трудовыми и финансовыми затратами. В ряде случаев потеря данных несет потенциальную угрозу для обеспечения безопасности жизни людей и техники. Различные измерительные системы технического зрения формируют различные виды телевизионных сигналов: одномерные сигналы, профили и изображения. Для восстановления данных был разработан метод итерационного совмещения различных видов телевизионных сигналов для систем технического зрения. Апробация метода показала повышение надежности и достоверности измерений.
Структура модели ISO/OSI не позволяет произвести выбор оптимального маршрута передачи пакетов на канальном уровне и предотвратить образование кольцевых маршрутов. Данные функции выполняет сетевой уровень. В общем случае задачу маршрутизации пакетов решает коммутатор исходя из алгоритма маршрутизации, который содержит в себе скрытый механизм “флудинга”. Пакет от коммутатора отправителя посылается во все порты, за исключением того порта, в который данный пакет поступил. При поступлении пакета коммутатор анализирует заголовок и если адрес в заголовке совпадает с адресом, которому принадлежит коммутатор то пакет принимается. Данная ситуация в совокупности с неравномерностью отправки сообщения создает повышенную нагрузку на коммутирующие устройства в случайные моменты времени и определяет проблему распределения потока входных данных в условиях пульсирующего трафика. Пульсирующий трафик можно рассматривать как нечеткость, лежащую в определенных границах. Для сглаживания трафика возможно применять кластеры коммутационных устройств, которые в свою очередь рассматриваются как исходящие устройства для следующего уровня кластеров. Таким образом, для распределения нагрузки возможно применить алгоритм распределения потоков, применяемый при решении транспортной задачи.
В статье рассматриваются подводные беспроводные системы связи. Исследования в области подводной оптической беспроводной системы связи являются актуальными и перспективными, что позволяет развивать науку, промышленность, находить решения оборонных задач и чрезвычайных ситуаций, производить дистанционный мониторинг загрязнения окружающей среды подводного мира, контролировать подводные объекты и подводное оборудование морских нефтепромыслов, производить подводные исследования и многое другое. Цель работы - разработка классификации принципов построения и организации подводной оптиеской беспроводной системы связи с учетом современных достижений и развития технологий в области подводной беспроводной системы связи. Предложенная обобщенная классификация подводной оптической беспроводной системы связи объединила все классификационные признаки в одну конфигурацию, что позволит произвести подбор оптимального варианта оборудования, программного обеспечения, протоколов маршрутизации и реализовать в различных типах устройств и аппаратов в зависимости от их применения, назначения. Показано, что подводная оптическая беспроводная система связи обладает большим потенциалом для усиления традиционной подводной беспроводной акустической системы связи и подводной беспроводной радиочастотной системы связи благодаря высокой скорости передачи информации, низкой задержки, меньшему энергопотреблению и компактным размерам. Приводится обоснование для необходимости разработки обобщенной классификации подводной оптической беспроводной системы связи в зависимости от используемых протоколов маршрутизации, от конфигурации канала связи, от оптических свойств воды, от типа воды, в которой организуется канал передачи, от подвижности подводных аппаратов и зоны покрытия, от используемого вида модуляции, способа подводной связи и от факторов, влияющих на организацию канала связи, и ее преимущества перед известными.
Издательство
- Издательство
- Издательский дом Медиа Паблишер
- Регион
- Россия, Москва
- Почтовый адрес
- 111024, г. Москва, вн.тер.г. Муниципальный Округ Лефортово, ул Авиамоторная, д. 8, стр. 1
- Юр. адрес
- 111024, г. Москва, вн.тер.г. Муниципальный Округ Лефортово, ул Авиамоторная, д. 8, стр. 1
- ФИО
- Дымкова Светлана Сергеевна (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- E-mail адрес
- ds@media-publisher.ru
- Контактный телефон
- +7 (926) 2188243