1. Patel SG, Karlitz JJ, Yen T, Lieu CH, Boland CR. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol Hepatol. 2022;7(3):262-274. DOI: 10.1016/s2468-1253(21)00426-x EDN: GFDBWJ
2. Кит О. И., Дженкова Е. А., Мирзоян Э. А., Геворкян Ю. А., Сагакянц А. Б., Тимошкина Н. Н., и др. Молекулярно-генетическая классификация подтипов колоректального рака: современное состояние проблемы. Южно-Российский онкологический журнал. 2021;2(2):50-56. DOI: 10.37748/2686-9039-2021-2-2-6 EDN: ACVMCT
3. Abancens M, Bustos V, Harvey H, McBryan J, Harvey BJ. Sexual Dimorphism in Colon Cancer. Front Oncol. 2020 Dec 9;10:607909. DOI: 10.3389/fonc.2020.607909 EDN: NAJGIQ
4. Wu Z, Xiao C, Long J, Huang W, You F, Li X. Mitochondrial dynamics and colorectal cancer biology: mechanisms and potential targets. Cell Comm Sig. 2024;22(1):91. DOI: 10.1186/s12964-024-01490-4
5. Zhang L, Yu J. Role of apoptosis in colon cancer biology, therapy, and prevention. Curr Colorectal Cancer Rep. 2013 Dec;9(4):10. DOI: 10.1007/s11888-013-0188-z
6. Кит О. И., Шихлярова А. И., Франциянц Е. М., Нескубина И. В., Каплиева И. В., Гончарова А. С., и др. Процессы самоорганизации митохондрий при росте экспериментальных опухолей в условиях хронической нейрогенной боли. Известия высших учебных заведений. Северо-Кавказский регион. Серия: Естественные науки. 2019;2(202):97-105. DOI: 10.23683/0321-3005-2019-2-97-105
7. Ramachandran A, Madesh M, Balasubramanian KA. Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol. 2000 Feb;15(2):109-120. DOI: 10.1046/j.1440-1746.2000.02059.x
8. Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85-100. DOI: 10.1038/s41580-019-0173-8
9. Егорова М. В., Афанасьев С. А. Выделение митохондрий из клеток и тканей животных и человека: современные методические приемы. Сибирский медицинский журнал. 2011;26(1-1):22-28. EDN: NHHOZX
10. Гуреев А. П., Кокина А. В., Сыромятникова М. Ю., Попов В. Н. Оптимизация методов выделения митохондрий из разных тканей мыши. Вестник ВГУ, серия: химия, биология, фармация. 2015;4:61-65.
11. Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. 2002;1:9. DOI: 10.1186/1476-4598-1-9 EDN: EQDOIC
12. Lagadinou ED, Sach A, Callahan K, Rossi RM, Nearing SJ, Minhajuddin M, et al. BCL-2 inhibition targets oxidative phosphorylation and selectively kills quiescent human leukemia stem cells. Cell Stem Cells. 2013;12(3):329-341. DOI: 10.1016/j.stem.2012.12.013
13. Panov A, Orynbayeva Z. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP. PLoS One. 2013;8(8):e72078. DOI: 10.1371/journal.pone.0072078 EDN: RFPFED
14. Zhang BB, Wang DG, Guo FF, Xuan C. Mitochondrial membrane potential and reactive oxygen species in cancer stem cells. Fam Cancer. 2015;14(1):19-23. DOI: 10.1007/s10689-014-9757-9
15. Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Metabol Cancer. 2014;2:17. DOI: 10.1186/2049-3002-2-17 EDN: YDJEFN
16. Corbet C, Pinto A, Martherus R, Santiago de Jesus JP, Polet F, Feron O. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab. 2016;24(2):311-323. DOI: 10.1016/j.cmet.2016.07.003
17. Moon DO. The role of calcium in orchestrating apoptosis in cancer: a mitochondrial perspective.Int J Mol Sci. 2023;24(10):8982. DOI: 10.3390/ijms24108982
18. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008 Oct 27;27(50):6407-6418. DOI: 10.1038/onc.2008.308 EDN: YAVVMV
19. Patergnani S, Danese A, Bouhamida E, Aguiari G, Previati M, Pinton P, Giorgi C. Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer.Int J Mol Sci. 2020 Nov 6;21(21):8323. DOI: 10.3390/ijms21218323
20. Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C. Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem. 2010 Apr 30;285(18):13678-13684. DOI: 10.1074/jbc.M109.096040 EDN: NZZJWP
21. Chang MJ, Zhong F, Lavik AR, Parys JB, Berridge MJ, Distelhorst CW. Feedback regulation mediated by Bcl-2 and DARPP-32 regulates inositol 1,4,5-trisphosphate receptor phosphorylation and promotes cell survival. Proc Natl Acad Sci USA. 2014 Jan 21;111(3):1186-1191. DOI: 10.1073/pnas.1323098111
22. Vervloessem T, Kerkhofs M, La Rovere RM, Sneyers F, Parys JB, Bultynck G. Bcl-2 inhibitors as anti-cancer therapeutics: The impact of and on calcium signaling. Cell Calcium. 2018 Mar;70:102-116. https://doi.org/016/j.ceca.2017.05.014. EDN: YCWBAL
23. Andreu-Fernandez V, Sancho M, Genoves A, Lucendo E, Todt F, Lauterwasser J, et al. The Bax transmembrane domain interacts with Bcl-2 pro-survival proteins in biological membranes. Proc Natl Acad Sci USA. 2017;114(2):310-315. https://doi.org/1073/pnas.1612322114.
24. Ramesh P, Medema JP. BCL-2 family deregulation in colorectal cancer: potential for BH3 mimetics in therapy. Apoptosis. 2020;25(5-6):305-320. DOI: 10.1007/s10495-020-01601-9 EDN: QJRWQZ
25. Cui J, Placzek WJ. Post-Transcriptional regulation of anti-apoptotic BCL2 family members.Int J Mol Sci. 2018;19(1):308. DOI: 10.3390/ijms19010308
26. Lindner AU, Salvucci M, Morgan C, Monsefi N, Resler AJ, Cremona M, et al. BCL-2 system analysis identifies high-risk colorectal cancer patients. Gut. 2017;66(12):2141-2148. DOI: 10.1136/gutjnl-2016-312287
27. Xu L, Xie Q, Qi L, Wang C, Xu N, Liu W, et al. Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells. Oncol Rep. 2018;39(3):985-992. DOI: 10.3892/or.2017.6164
28. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing effect of BCL-2 family proteins. Nat Rev Mol Cell Biology. 2019;20(1):175-193. DOI: 10.1038/s41580-018-0089-8
29. Rana R, Huirem RS, Kant R, Chauhan K, Sharma S, Yashavarddhan MH, et al. Cytochrome C as a potential clinical marker for diagnosis and treatment of glioma. Front Oncol. 2022;12:960787. DOI: 10.3389/fonc.2022.960787 EDN: GKIXIA
30. Morse PT, Arroum T, Wan J, Pham L, Vaishnav A, Bell J, et al. Phosphorylations and Acetylations of Cytochrome c Control Mitochondrial Respiration, Mitochondrial Membrane Potential, Energy, ROS, and Apoptosis. Cells. 2024;13(6):493. DOI: 10.3390/cells13060493 EDN: TDXQOQ
31. Culpage HA, Wang J, Morse PT, Zurek MP, Turner AA, Khobeir A, et al. Cytochrome c phosphorylation: control of electron flow in the mitochondrial electron transport chain and apoptosis.Int. J. Biochem. Cell Biol. 2020;121:105704. DOI: 10.1016/j.biocel.2020.105704
32. Cheng TS, Hong K, Eiki YW, Yuan S, Eiki KW. Near-atomic structure of the active human apoptosome. eLife. 2016;5:e17755. DOI: 10.7554/eLife.17755
33. Kalkavan H, Chen MJ, Crawford JC, Quarato G, Fitzgerald P, Tait SWG, Goding CR, Green DR. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell. 2022 Sep 1;185(18):3356-3374.e22. https://doi.org/1016/j.cell.2022.07.025. EDN: IHZIHN
34. González-Arzola C, Díaz-Quintana A, Bernardo-García N, Martínez-Fábregas J, Rivero-Rodríguez F, Casado-Combreras MA, et al. Nuclear-translocated mitochondrial cytochrome c releases the nucleophosmin-sequestered tumor suppressor ARF by altering nucleolar fluid-phase partitioning. Nat Struct Mol Biol. 2022 Oct;29(10):1024-1036. DOI: 10.1038/s41594-022-00842 EDN: CDDBHM
35. Kalpage HA, Bazylianska V, Recanati MA, Fite A, Liu J, Wan J, et al. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J. 2019;33(2):1540-1553. DOI: 10.1096/fj.201801417R
36. Novo N, Romero-Tamayo S, Marcuello C, Boneta S, Blasco-Machin I, Velazquez-Campoy A, et al. A platform protein for degradosome assembly: apoptosis-inducing factor as an efficient nuclease involved in chromatinolysis. PNAS Nexus. 2022;2(2):pgac312. DOI: 10.1093/pnasnexus/pgac312 EDN: LLHMQC
37. Norberg E, Orrenius S, Zhivotovsky B. Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun. 2010;396(1):95-100. DOI: 10.1016/j.bbrc.2010.02.163
38. Sorrentino L, Calogero AM, Pandini V, Vanoni MA, Sevrioukova IF, Aliverti A. Key role of the adenylate moiety and integrity of the adenylate-binding site for the NAD(+)/H binding to mitochondrial apoptosis-inducing factor. Biochemistry. 2015;54(47):6996-7009. DOI: 10.1021/acs.biochem.5b00898 Mastrangelo E. Structural bases of the altered catalytic properties of a pathogenic variant of apoptosis inducing factor. Biochem Biophys Res Commun. 2017;490(3):1011-1017. DOI: 10.1016/j.bbrc.2017.06.156
40. Brosey CA, Ho C, Long WZ, Singh S, Burnett K, Hura GL, et al. Defining NADH-Driven allostery regulating apoptosis-inducing factor. Structure. 2016;24(12):2067-2079. DOI: 10.1016/j.str.2016.09.012 EDN: FECQWH
41. Novo N, Ferreira P, Medina M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life. 2021;73(3):568-581. DOI: 10.1002/iub.2390 EDN: XCMAZH
42. Dixon-Murray E, Nedara K, Mojtahedi N, Tokatlidis K. The Mia40/CHCHD4 oxidative folding system: regulation of redox processes and signaling in the mitochondrial intermembrane space. Antioxidants (Basel). 2021;10(4):592. DOI: 10.3390/antiox10040592
43. Bano D, Prehn JHM. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer. EBioMedicine. 2018 Apr;30:29-37. DOI: 10.1016/j.ebiom.2018.03.016
44. Wischhof L, Scifo E, Ehninger D, Bano D. AIFM1 beyond cell death: An overview of this OXPHOS-inducing factor in mitochondrial diseases. EBioMedicine. 2022 Sep;83:104231. DOI: 10.1016/j.ebiom.2022.104231