Статья: УТОЧНЕНИЕ ТЕОРЕМ ТИПА МАКИНТАЙРА - ЕВГРАФОВА (2023)

Читать онлайн

Изучение асимптотического поведения целой трансцендентной функции вида f (z) = n anzpn, pn ∈ N, на кривых γ, произвольным образом уходящих в бесконечность, является классической задачей, восходящей к работам Адамара, Литлвуда и Полиа. Так, Полиа была поставлена следующая задача: при каких условиях на pn существует неограниченная последовательность {ξn} ⊂ γ, такая, что ln Mf (|ξn|) ~ ln |f (ξn)| приξn → ∞ (проблема Полиа). Здесь Mf (r) - максимум модуля f на окружности радиуса r. Он показал, что если последовательность {pn} имеет нулевую плотность, а f - конечный порядок, то указанное соотношение между ln Mf (|ξn|) и ln |f (ξn)| всегдаимеет место. Это утверждение верно и в случае, когда f имеет конечный нижний порядок: окончательные результаты для этого случая были получены А. М. Гайсиным, И. Д. Латыповым и Н. Н. Юсуповой-Аиткужиной. В настоящей статье рассматривается ситуация, когда нижний порядок равен бесконечности. Ответ на проблему Полиа в 2003 г. был получен А. М. Гайсиным, и он носит характер критерия. Оказывается, если условиям этого критерия удовлетворяет не сама последовательность {pn}, атолько подпоследовательность - последовательность центральных показателей, тологарифмы максимума модуля и модуля суммы ряда будут также эквивалентны в указанном смысле на любой кривой γ, уходящей в бесконечность.

Ключевые фразы: лакунарный ряд, ряд дирихле, максимальный член, задача полиа, теорема типа макинтайра - евграфова
Автор (ы): Гайсин Ахтяр Магазович
Соавтор (ы): Гайсина Галия Ахтяровна
Журнал: ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ

Предпросмотр статьи

Идентификаторы и классификаторы

УДК
517.53. Функции одного комплексного переменного
Для цитирования:
ГАЙСИН А. М., ГАЙСИНА Г. А. УТОЧНЕНИЕ ТЕОРЕМ ТИПА МАКИНТАЙРА - ЕВГРАФОВА // ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ. 2023. Т. 8 № 3
Текстовый фрагмент статьи
Моя история просмотров (10)